Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (5): 1649-1656.doi: 10.16285/j.rsm.2018.0005

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of acoustic emission frequency spectrum characteristics and main fracture precursor of rock bridge in direct shear test

CHEN Guo-qing1, TANG Peng1, LI Guang-ming1, ZHANG Guang-ze2, WANG Dong2   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. China Railway Eryuan Engineering Group Co. Ltd, Chengdu, Sichuan 610031, China
  • Received:2018-01-01 Online:2019-05-11 Published:2019-06-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41521002, 41572283, 41130745) and China Railway Eryuan Engineering Group Co. Ltd Funding(KYY2018010(18-19)) .

Abstract: The acoustic emission (AE) research of rock bridge failure is usually only based on the analysis of related parameters such as counting, energy and so on. In order to study the AE frequency spectrum characteristics of rock bridge in direct shear test, the characteristics of AE frequency spectrum are analyzed using time frequency analysis method. The results show that the amplitude is more obvious and the time of intense response is earlier compared with the counts rate in direct shear test. The AE dominant frequency is basically in the high and low frequency bands. The characteristics of the dominant frequency dispersing to intermediate and the low frequency having high amplitude can be used as precursor information of main fracture, and the former appears earlier. Compared with the result from uniaxial compression test, the amplitude in the main fracture stage is obviously different with intermediate frequency occurs at this time. The amplitude of AE is determined by the stress of particles, and the frequency is related to the final displacement of the particle force chain. With the increase of rock bridge width, the dominant frequency band increases, while the normal stress increases, the average frequency decreases. This study can provide reference for the stability analysis of joint slope.

Key words: bridge, acoustic emission, direct shear tests, frequency spectrum analysis

CLC Number: 

  • TU 457
[1] WANG Chuang-ye, CHANG Xin-ke, LIU Yi-Lin, GUO Wen-bin, . Spectrum evolution characteristics of acoustic emission during the rupture process of marble under uniaxial compression condition [J]. Rock and Soil Mechanics, 2020, 41(S1): 51-62.
[2] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[3] ZHANG Xiao-jun, LI Xiao-cheng, LIU Guo-lei, LI Bao-yu, . Experimental study on the effect of local risk reduction of pressure relief hole for splitting [J]. Rock and Soil Mechanics, 2020, 41(S1): 171-178.
[4] GAN Yi-xiong, WU Shun-chuan, REN Yi, ZHANG Guang, . Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(7): 2324-2332.
[5] QIAO Xiang-jin, LIANG Qing-guo, CAO Xiao-ping, WANG Li-li, . Research on dynamic responses of the portal in bridge-tunnel connected system [J]. Rock and Soil Mechanics, 2020, 41(7): 2342-2348.
[6] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[7] SUN Yin-lei, TANG Lian-sheng, LIU Jie, . Advances in research on microstructure and intergranular suction of unsaturated soils [J]. Rock and Soil Mechanics, 2020, 41(4): 1095-1122.
[8] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[9] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[10] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
[11] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[12] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[13] LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads [J]. Rock and Soil Mechanics, 2019, 40(S1): 267-274.
[14] YANG Dao-xue, ZHAO Kui, ZENG Peng, ZHUO Yu-long, . Numerical simulation of unknown wave velocity acoustic emission localization based on particle swarm optimization algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 494-502.
[15] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!