Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (12): 4907-4915.doi: 10.16285/j.rsm.2018.1983

• Numerical Analysis • Previous Articles     Next Articles

Modelling lateral pipe-soil interaction on soft clay using large displacement sequential limit analysis

FENG Ling-yun1, 2, ZHU Bin1, 2, DAI Jia-lin1, 2, KONG De-qiong1, 2   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2018-10-26 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51809232, 51679211).

Abstract: Pipelines are widely used in the petroleum industry for oil and gas transportation, and the interaction between pipelines and seabed is crucial for assessing pipeline behavior during lateral thermal buckling. This paper presents a numerical investigation on the pipe-soil interaction behaviour using a recently developed sequential limit analysis approach for deep-water pipelines on soft clay. This approach, primarily based on upper-bound limit analysis, is capable of handling the extremely large deformation problems and implementing the strain softening and strain rate effects. During the analysis, the pipe was laterally driven forward with the elevation of its invert fixed, differing from existing work in which the pipe can dive or rebound during the lateral displacement. The evolution of vertical (V) and horizontal (H) soil resistance was examined, and the validity of the present model is demonstrated using comparisons with centrifuge data. V-H yield envelopes were derived during the analysis to investigate the influence of load path on pipe response. The equivalent friction ratio, H/V, was found to increase linearly with lateral displacement. This study aims to provide guidance for the controlled buckling design for deep-water pipelines, and show the potential of SLA in solving large displacement soil-structure problems in undrained clay.

Key words: clay, deep-water pipelines, pipe-soil interaction, limit analysis, yield envelope

CLC Number: 

  • TU 470
[1] LIU Jie, YANG Yu-hua, YAO Hai-lin, LU Zheng, YUE Chan, . Experimental study on treatment of dispersive clay based on different modification methods [J]. Rock and Soil Mechanics, 2020, 41(S1): 163-170.
[2] LIU Ke-qi, DING Wan-tao, CHEN Rui, HOU Ming-lei. Construction of three-dimensional failure model of shield tunnel face and calculation of the limit supporting force [J]. Rock and Soil Mechanics, 2020, 41(7): 2293-2303.
[3] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[4] YU Lu, YANG Qing, YANG Gang, ZHANG Jin-li. Analysis of the resistance of elliptical tip of torpedo anchor by plastic limit analysis [J]. Rock and Soil Mechanics, 2020, 41(6): 1953-1962.
[5] WANG Yu-ke, WAN Yong-shuai, FANG Hong-yuan, ZENG Chang-nü, SHI Ming-sheng, WU Di, . Experimental study of cyclic behavior of soft clay under circle stress paths [J]. Rock and Soil Mechanics, 2020, 41(5): 1643-1652.
[6] REN Lian-wei, CAO Hui, KONG Gang-qiang. Treatment effect of reagent injection mixing ratio on soft clay improved by chemical electroosmosis method [J]. Rock and Soil Mechanics, 2020, 41(4): 1219-1226.
[7] ZHANG Xue-dong, CAI Hong, WEI Ying-qi, ZHANG Zi-tao, LIANG Jian-hui, HU Jing. Characterization of the seismic behavior of tailings reservoir founded on soft soil using dynamic centrifuge tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1287-1294.
[8] REN Yu-xiao, YAN Yue, FU Deng-feng. Study of axial resistance of subsea pipe on shallow foundation [J]. Rock and Soil Mechanics, 2020, 41(4): 1404-1411.
[9] YANG Feng, HE Shi-hua, WU Yao-jie, JI Li-yan, LUO Jing-jing, YANG Jun-sheng. Tunnel face stability analysis by the upper-bound finite element method with rigid translatory moving element in heterogeneous clay [J]. Rock and Soil Mechanics, 2020, 41(4): 1412-1419.
[10] LIU Jian-min, QIU Yue, GUO Ting-ting, SONG Wen-zhi, GU Chuan, . Comparative experimental study on static shear strength and postcyclic strength of saturated silty clay [J]. Rock and Soil Mechanics, 2020, 41(3): 773-780.
[11] CHEN Wei-zhong, LI Fan-fan, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study on creep characteristics of claystone under thermo-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2020, 41(2): 379-388.
[12] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[13] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, YANG Jian-jun, SUN Jia-bao, . An asymptotic state constitutive model for saturated clay under partial drainage [J]. Rock and Soil Mechanics, 2020, 41(2): 485-491.
[14] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[15] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!