Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (1): 57-66.doi: 10.16285/j.rsm.2018.2275

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness

XIA Cai-chu, YU Qiang-feng, QIAN Xin, GUI Yang, ZHUANG Xiao-qing   

  1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-12-16 Revised:2019-06-17 Online:2020-01-13 Published:2020-01-05
  • About author:First author: XIA Cai-chu, male, (1963-), PhD, Professor, Ph.D supervisor, mainly engaged in the researches of mechanical properties of rock joints, crack mechanical properties of the frozen-swelling and large deformation behavior of soft rockmass. E-mail: tjxiaccb@126.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41327001, 51778475).

Abstract: In order to study the shear-flow coupling characteristics of joints under constant normal stiffness (CNS) boundary condition, the shear-flow coupling tests under three different stiffness and seepage pressure settings were carried out for duplicate joint specimens with three different joint roughnesses. Meanwhile, the effects of normal stiffness, seepage pressure and joint roughness on the mechanical properties and seepage characteristics in joint shearing process were systematically analyzed. The test results indicate that the peak shear strength of joint increases with the increase of normal stiffness, while the flow rate, equivalent hydraulic aperture and transmissivity decrease with the increase of normal stiffness; and the flow rate of seepage through joint surfaces during shearing process decreases with the increase of joint roughness. A three-stage change rule of flow rate that is similar to the joint dilatancy is shown in the shearing process: rapid growth stage, slow growth stage, and stable stage. The same rule has also been observed in equivalent hydraulic aperture and transmissivity. During the stable stage, the flow rate is approximately linear with the variation of the normal stiffness and seepage pressure, and the joints with higher roughness present lower flow rate as the seepage pressure increases.

Key words: joints, shear-seepage coupling behaviour, normal stiffness, seepage pressure, joint roughness

CLC Number: 

  • TU 452
[1] HONG Chen-jie, HUANG Man, XIA Cai-chu, LUO Zhan-you, DU Shi-gui, . Study of size effect on the anisotropic variation coefficient of rock joints [J]. Rock and Soil Mechanics, 2020, 41(6): 2098-2109.
[2] HOU Qin-kuan, YONG Rui, DU Shi-gui, XU Min-na, CAO Ze-min. Methods of determining the minimum number of samples for statistical measurement of rock joint roughness [J]. Rock and Soil Mechanics, 2020, 41(4): 1259-1269.
[3] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan. Experimental study of seepage characteristics of consecutive and filling fracture with different roughness levels and gap-widths [J]. Rock and Soil Mechanics, 2019, 40(8): 3062-3070.
[4] XU Jiang, QU Jia-mei, LIU Yi-xin, PENG Shou-jian, WANG Wei, WU Shan-kang, . Influence of filling material on the behavior of joints under cyclic shear loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637.
[5] ZHOU Hui, CHENG Guang-tan, ZHU Yong, CHEN Jun, LU Jing-jing, CUI Guo-jian, YANG Pin-qing, . Experimental study of shear deformation characteristics of marble dentate joints [J]. Rock and Soil Mechanics, 2019, 40(3): 852-860.
[6] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[7] FENG Li, ZHANG Mao-sheng, HU Wei, DONG Ying, MENG Xiao-jie. Discussion on microscopic, microcosmic characteristics and developmental mechanism of loess vertical joints [J]. Rock and Soil Mechanics, 2019, 40(1): 235-244.
[8] CHEN Xi, ZENG Ya-wu, SUN Han-qing, REN Shu-lin, LIU Wei. A new peak shear strength model of rock joints [J]. Rock and Soil Mechanics, 2018, 39(S2): 123-130.
[9] YANG Sheng-qi, LU Jia-wei, TIAN Wen-ling, TANG Jin-zhou,. Experimental study of mechanical behavior of rock specimens with different joint roughness coefficient under conventional triaxial compression [J]. , 2018, 39(S1): 21-32.
[10] LI Zheng-wei, ZHANG Yan-jun, ZHANG Chi, XU Tian-fu,. Experiment on convection heat transfer characteristics in a single granite fracture [J]. , 2018, 39(9): 3261-3269.
[11] ZHAI Ming-lei, GUO Bao-hua, LI Bing-yang, JIAO Feng,. Energy and deformation characteristics of rock joints under multi-stage shear loading-creep-unloading conditions [J]. , 2018, 39(8): 2865-2872.
[12] HAN Zhi-ming, QIAO Chun-sheng, ZHU Ju. Analysis of strength and failure characteristics of rock mass with two sets of cross-persistent joints [J]. , 2018, 39(7): 2451-2460.
[13] ZHAI Shu-fang, ZHOU Xiao-ping, BI Jing, . Numerical study of rock fragmentation by TBM cutters using general particle dynamics (GPD) [J]. , 2018, 39(7): 2699-2707.
[14] FENG Da-kuo, ZHANG Jian-min, . Influence of normal stiffness on 3D monotonic and cyclic behaviors of a gravel-structure interface [J]. , 2018, 39(11): 3929-3936.
[15] SONG Lei-bo1, JIANG Quan, LI Yuan-hui, YANG Cheng-xiang, RAN Shu-guang, WANG Bai-lin, LIU Ting,. Description of discontinuities morphology based on shear behavior [J]. , 2017, 38(2): 525-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!