Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (3): 849-857.doi: 10.16285/j.rsm.2019.0461

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Catastrophe analysis of open-pit slope stability under blasting load

ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, ZHANG Ling-fan, NIAN Geng-qian   

  1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
  • Received:2018-03-05 Revised:2019-08-20 Online:2020-03-11 Published:2020-05-25
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2016YFC0801602, 2017YFC1503103).

Abstract: Cusp catastrophe theory models of the rock slope instability under open blasting load were built based on the two-dimensional mechanical instability model considering the factors of blasting dynamic load. According to the established model, the influences of the amplitude and frequency of blasting dynamic load on the slope stability were discussed, and the dynamic critical instability height of the slope was derived, the criterion of the slope instability was also proposed. The result reveals that the possibility of slope instability increases with the increase of amplitude of the dynamic load, the decrease of frequency and the increase of trailing edge crack depth; the stability of slope is dynamic, and with the increase of incident angle of stress wave, the possibility of slope failure is increasing under blasting load. Taking two slopes in Dagushan Open-pit Mine as examples, the dynamic safety factor and the dynamic self-stability critical height of the slope are calculated, and the rationality of the proposed slope instability criterion is verified by the actual stability of the slope at present. It provides a certain theoretical support for preventing the dynamic instability of slope rock mass in the process of blasting excavation in open-pit mine.

Key words: blasting load, rock slope, cusp catastrophe theory, dynamic self-stability critical height, dynamic instability

CLC Number: 

  • TU 457
[1] XU Xiao-dong, SUN Guang-hua, YAO Xu-long, LIANG Xue-jian, SHAO Lu-hang, . A cusp catastrophe warning model for instability of backfill based on energy dissipation and release [J]. Rock and Soil Mechanics, 2020, 41(9): 3003-3012.
[2] AN Cai-long, LIANG Ye, WANG Liang-qing, DENG Shan, SUN Zi-hao, FAN Bin-qiang, ZHENG Luo-bin. Three-dimensional optimization design for the direction angle of anchor cable reinforcement in wedge rock slope [J]. Rock and Soil Mechanics, 2020, 41(8): 2765-2772.
[3] LI Long-qi, HE Chuan, WANG Tao, ZHAO Rui-zhi, JU Neng-pan. Study on fracture development characteristics and marginal spectral entropy response of soft and hard interbedded slope with steep inclination subjected to strong earthquakes [J]. Rock and Soil Mechanics, 2020, 41(10): 3456-3464.
[4] ZHU Lei, HUANG Run-qiu, CHEN Guo-qing, YAN Ming, . Mechanical model and evolution of fracture system with a gentle dip angle in rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 53-62.
[5] LIU Shun-qing, HUANG Xian-wen, ZHOU Ai-zhao, CAI GUO-jun, JIANG Peng-ming, . A stability analysis method of soil-rock slope based on random block stone model [J]. Rock and Soil Mechanics, 2019, 40(S1): 350-358.
[6] JIANG An-nan, ZHANG Quan, WU Hong-tao, DUAN Long-mei, JIAO Ming-wei, BAI Tao, . Stability analysis of slope affected by blasting based on improved local safety method [J]. Rock and Soil Mechanics, 2019, 40(S1): 511-518.
[7] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[8] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[9] YAN Zhi-xin, LONG Zhe, QU Wen-rui, ZHANG Sen, JIANG Ping, . The effect of shear on the anchorage interface of rock slope with weak layers under earthquake [J]. Rock and Soil Mechanics, 2019, 40(7): 2882-2890.
[10] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[11] JIANG Li-Chun, LUO En-Min, SHEN Bin-Bin, . A dynamic response of blasting to stereoscopic goaf group based on the multi-degree of freedom model method [J]. Rock and Soil Mechanics, 2019, 40(6): 2407-2415.
[12] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[13] REN Jin-lan, CHEN Xi, WANG Dong-yong, LÜ Yan-nan. Instantaneous linearization strength reduction technique for generalized Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2019, 40(12): 4865-4872.
[14] JIANG Shui-hua, LIU Xian, YAO Chi, YANG Jian-hua, HUANG Jin-song, JIANG Xian-he,. System reliability analysis of rock slopes at low probability levels [J]. , 2018, 39(8): 2991-3000.
[15] XIAO Guo-feng, CHEN Cong-xing. Simulation of progressive failure process and stability analysis method for rock block [J]. , 2018, 39(8): 3001-3010.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[7] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] WEI Hou-zhen, YAN Rong-tao, WEI Chang-fu, WU Er-lin, CHEN Pan, TIAN Hui-hui. Summary of researches for phase-equilibrium of natural gas hydrates in bearing sediments[J]. , 2011, 32(8): 2287 -2294 .