Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (3): 713-722.doi: 10.16285/j.rsm.2020.1110

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on water retention characteristics of saline soil in the full suction range

LIU Qian-qian1, 2, LI Jian1, 2, CAI Guo-qing1, 2, LI Peng-lin3, LI Xin-zhe1, 2   

  1. 1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 2. School of Civil Engineering and Architecture, Beijing Jiaotong University, Beijing 100044, China; 3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
  • Received:2020-07-05 Revised:2020-12-31 Online:2021-03-11 Published:2021-03-15
  • Supported by:
    This work was supported by the Fundamental Research Funds for the Central Universities(2019JBM083).

Abstract: Saline soil contains a large amount of soluble salts, and the change of water content and suction has an important effect on its engineering properties. At present, few studies focus on the water retention characteristics of saline soil, and there is no uniform and clear soil water characteristic curve of saline soil in the full suction range. In this paper, the pressure plate method, vapor equilibrium method, and chilled-mirror dew-point technique were used to measure the matric suction and total suction of saline soils. The influences of compaction degree and salt contents on the water retention characteristics of saline soils were studied by experiments. The experimental results showed that in the low suction range, with the increasing of compaction degree, the saturated volumetric water content of the soil sample decreases and the value of air-entry suction increases. The water retention capacity increases with the increase of compaction degree and pore solution concentration, and the pore solution concentration has an obvious influence on the matric suction especially for the soil with low compaction degree. In the high suction range, for the soil with high salt content, the compaction degree has a significant influence on the soil-water characteristic curve, and the water retention capacity of soil increases with the increasing of salt content.

Key words: saline soil, soil-water characteristic curve, pressure plate method, vapor equilibrium method, compaction degree, salt content

CLC Number: 

  • TU411
[1] LI Yue, XU Wei-ya, YI Kui, XIE Wei-chao, ZHANG Qiang, MENG Qing-xiang, . Experimental study of unsaturated-saturated permeability characteristics of slip soil in landslide deposits [J]. Rock and Soil Mechanics, 2021, 42(5): 1355-1362.
[2] YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, CHEN Zi-he, . Three-dimensional mechanical properties of light solidified saline soil [J]. Rock and Soil Mechanics, 2021, 42(3): 593-600.
[3] ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, YUAN Hao, . True triaxial shear tests of remolded loess under different matrix suctions [J]. Rock and Soil Mechanics, 2020, 41(S1): 156-162.
[4] NIU Li-si, ZHANG Ai-jun, WANG Yu-guo, REN Wen-yuan, ZHAO Jia-min, ZHAO Qing-yu, . Critical state characteristics of high soluble salt unsaturated undisturbed Ili loess [J]. Rock and Soil Mechanics, 2020, 41(8): 2647-2658.
[5] CHEN Wen-wu, JIA Quan-quan, TONG Yan-mei, . Measurement and curve fitting for soil-waterer characteristic curve of mural plaster at Mogao Grottoes [J]. Rock and Soil Mechanics, 2020, 41(5): 1483-1491.
[6] CHEN Ren-peng, WANG Peng-fei, LIU Peng, CHENG Wei, KANG Xin, YANG Wei, . Experimental study on soil-water characteristic curves of subgrade coal gangue filler [J]. Rock and Soil Mechanics, 2020, 41(2): 372-378.
[7] WANG Li-ye, ZHOU Feng-xi, QIN Hu, . Fractional creep model and experimental study of saturated saline soil [J]. Rock and Soil Mechanics, 2020, 41(2): 543-551.
[8] CHEN Ke, CAO Wen-gui, CHEN He. Hysteresis incremental model of soil-water characteristic curve based on pore expansion and contraction [J]. Rock and Soil Mechanics, 2020, 41(10): 3236-3244.
[9] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[10] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[11] LI Ming-yu, SUN Wen-jing. Water retention behaviour of biochar-amended clay and its influencing mechanism [J]. Rock and Soil Mechanics, 2019, 40(12): 4722-4730.
[12] LÜ Qing-feng, ZHOU Gang, WANG Sheng-xin, HUO Zhen-sheng, MA Bo, . Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(1): 245-249.
[13] TAO Gao-liang, LI Jin, ZHUANG Xin-shan, XIAO Heng-lin, CUI Xi-lin, XU Wei-sheng. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics [J]. , 2018, 39(4): 1256-1262.
[14] CAO Ya-peng, WEN Tao, MI Hai-zhen, ZHOU Feng-xi, YANG Peng,. Salt expansion properties of sulfate saline soils under one time decrease of water content [J]. , 2018, 39(3): 881-888.
[15] TAO Gao-liang, BAI Liang, YUAN Bo, GAN Shi-chao. Study of relationship between soil-water characteristic curve and NMR curve [J]. , 2018, 39(3): 943-948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[3] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[7] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[8] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[9] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .
[10] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .