Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (12): 3203-3216.doi: 10.16285/j.rsm.2021.1039

• Fundamental Theroy and Experimental Research •     Next Articles

Fine characterization of the pore and fracture structure and strength degradation mechanism of gas bearing coal

WANG Lei1, LIU Huai-qian1, 2, XIE Guang-xiang1, 2, YUAN Qiu-peng1, CHEN Li-peng1   

  1. 1. State Key Laboratory of Mine Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2021-07-09 Revised:2021-08-17 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the Collaborative Innovation Funding Project of Anhui Universities (GXXT-2020-055).

Abstract: To explore the strength degradation mechanism of gas bearing coal, the uniaxial compression tests were performed on coal under different initial gas pressures by using self-developed gas-solid coupling test system, and the pore and fracture structures of gas bearing coal were characterized by SEM, high-pressure mercury injection, low-temperature liquid nitrogen adsorption and micro-CT scanning system. The mechanical and non-mechanical effects of different gas occurrence states on pores and fractures were described respectively, and the internal relationship between pore and fracture failure and the loss of macroscopic strength of gas bearing coal was revealed. The results show that the degradation degree of average uniaxial compressive strength of coal increases with the increase of initial gas pressure. The pore structure and pore size distribution of coal were characterized by multi-means, and it is found that the development of fracture structure of gas bearing coal is not obvious. The proportion of isolated pores is relatively large, and the connectivity between them is poor, which is not conducive to gas seepage. The method of jointly characterizing the pore structure and pore size distribution of coals can correct the errors caused by "shielding effect" of micropores and transition pores and the errors caused by the "compression effect" of coal matrix or pore and fracture failure caused by the sample size. Adsorbed gas leads to the fracture and failure of micro-elements through non-mechanical action, mechanical action of expansion stress and gas wedge effect of free gas on coal body. The mathematical model of mechanical property deterioration and macro strength loss of gas bearing coal based on the micro view angle was established. From the model, it is found that the action of gas leads to the shift of the center of the Mohr circle to the left, the envelope of Mohr-Coulomb strength to the right, and the cohesion becomes smaller, and finally it leads to the loss of macro strength of coal.

Key words: gas bearing coal, fine characterization, micro-meso fracture, macroscopic degradation, degradation mechanism

CLC Number: 

  • TU452
[1] LI Chun-yuan, ZUO Jian-ping, ZHANG Yong, . The linkage effect between floor failure and first weighting of the main roof in deep longwall mining [J]. Rock and Soil Mechanics, 2021, 42(12): 3301-3314.
[2] ZHOU Chao-biao, LIU Dong, JING Qing-hui, . Mechanical properties and failure mechanisms of the rocklike specimens under tension shear effects [J]. Rock and Soil Mechanics, 2021, 42(12): 3335-3344.
[3] TANG Xiong, LI Xin-po, YAO Jun, SUN Yu-lian, . Soil-water coupling dynamic model based on multiphase material point method [J]. Rock and Soil Mechanics, 2021, 42(12): 3345-3355.
[4] YANG Jian-hua, ZHANG Wei-peng, YAO Chi, ZHANG Xiao-bo, ZHOU Chuang-bing. Characteristic analysis of rock vibrations caused by blasting excavation in deep cavern based on variational mode decomposition [J]. Rock and Soil Mechanics, 2021, 42(12): 3366-3375.
[5] CHEN Nian, WANG Cheng-hu, GAO Gui-yun, WANG Pu, . Characteristics of in-situ stress field in the powerhouse area on the right bank of Baihetan based on stress polygon and borehole breakout method [J]. Rock and Soil Mechanics, 2021, 42(12): 3376-3384.
[6] YANG Liang, YANG Yong-tao, ZHENG Hong. The phase field numerical manifold method for crack propagation in rock [J]. Rock and Soil Mechanics, 2021, 42(12): 3419-3427.
[7] SONG Lei-bo, KANG Qian-qian, DU Shi-gui, ZHONG Zhen, WANG Gang, WANG Xing-kai, HAN Guan-sheng, ZHAO Jin-shuai, . Anisotropy mechanism of shear strength based on wear and shear failure evolution of asperities of joint surface [J]. Rock and Soil Mechanics, 2021, 42(9): 2331-2343.
[8] ZHANG Chao, YANG Chu-qing, BAI Yun. Investigation of damage evolution and its model of rock-like brittle materials [J]. Rock and Soil Mechanics, 2021, 42(9): 2344-2354.
[9] XU Ding-ping, GUO Guang-tao, XIA Yue-lin, LIU Xiu-yang, JIANG Quan, LI Shao-jun, LI Zhi-guo, . Macro-meso experimental study of intermediate principal stress effect on rockburst of Shuangjiangkou granite under high stress and strong unloading [J]. Rock and Soil Mechanics, 2021, 42(9): 2375-2386.
[10] CAI Can, ZHANG Pei, SUN Ming-guang, YANG Ying-xin, XIE Song, PU Zhi-cheng, YANG Xian-peng, GAO Chao, TAN Zheng-bo. Mechanism of rock breaking under combining of separated impact and cutting in oil and gas drilling [J]. Rock and Soil Mechanics, 2021, 42(9): 2535-2544.
[11] ZHANG Jian-cong, JIANG Quan, HAO Xian-jie, FENG Guang-liang, LI Shao-jun, WANG Zhi-lin, FAN Qi-xiang, . Analysis of stress-structural collapse mechanism of columnar jointed basalt under high stress [J]. Rock and Soil Mechanics, 2021, 42(9): 2556-2568.
[12] DU Song, XIAO Ming, CHEN Jun-tao, . Catastrophe progression method for geological block hazard analysis of underground caverns [J]. Rock and Soil Mechanics, 2021, 42(9): 2578-2588.
[13] JIANG Shui-hua, OUYANG Su, FENG Ze-wen, KANG Qing, HUANG Jin-song, YANG Zhi-gang, . Reliability analysis of jointed rock slopes using updated probability distributions of structural plane parameters [J]. Rock and Soil Mechanics, 2021, 42(9): 2589-2599.
[14] CHEN Shi-jie, XIAO Ming, WANG Xiao-wei, CHEN Jun-tao, . Numerical analysis of seismic damage characteristics of an underground cavern intersected by a steeply dipped fault [J]. Rock and Soil Mechanics, 2021, 42(9): 2600-2610.
[15] JIA Peng, YANG Qi-yao, LIU Dong-qiao, WANG Shu-hong, ZHAO Yong, . Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling [J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .