Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2726-2734.doi: 10.16285/j.rsm.2021.2037

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on internal erosion behaviors under fluctuating hydraulic condition using transparent soil

DENG Ze-zhi1, 2, JI En-yue1, WANG Gang2   

  1. 1. Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu 210024, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400044, China
  • Received:2021-12-03 Revised:2022-06-23 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the Open Research Fund of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources (YK321005), the Graduate Scientific Research and Innovation Foundation of Chongqing, China (CYS20021) and the Natural Science Foundation of Chongqing (cstc2021 jcyj-msxmX0598).

Abstract: Internal erosion is a phenomenon that fine particles migrate through the channels within coarse matrix under seepage flow. Previous studies mainly focused on the internal erosion under steady hydraulic gradient, while the behavior and mesoscopic mechanism of internal erosion under fluctuating hydraulic condition were paid little attention. In this study, a setup of transparent soil seepage test was developed. Seepage tests of two kinds of soils with different internal stabilities were conducted under steady and fluctuating hydraulic conditions respectively to investigate the internal erosion behaviors under fluctuating hydraulic condition. The macroscopic experimental phenomenon showed that, when the hydraulic gradient exceeded the critical hydraulic gradient, the increase of the hydraulic conductivity under fluctuating hydraulic condition was faster than that under steady hydraulic condition for internally unstable soil, manifesting that hydraulic fluctuation aggravated the migration of fines. In order to further reveal the mesoscopic mechanism, a three-dimensional reconstruction method was employed to rebuild the mesoscopic fabric of soil based on the two-dimensional cross-sectional images obtained by the planar laser scanning; and a three-dimensional visualization digital model including coarse matrix, inter-granular pore channels and fine particles was established. By observing the distribution of fine particles in pore channels, it was found that fine particles might clog and accumulate at narrow pore throats under steady seepage. While the perturbation caused by hydraulic fluctuation could break these weak stable structures of clog and accumulation, and then restart the migration process of fine particles.

Key words: internal erosion, hydraulic condition, transparent soil, 3D reconstruction, mesoscopic mechanism

CLC Number: 

  • TU 411.4
[1] MA Deng-hui, HAN Xun, GUAN Yun-fei, TANG Yi, . Pore structure and seepage characteristics analysis of coral sand particles [J]. Rock and Soil Mechanics, 2022, 43(S2): 223-230.
[2] LIU Ying-jing, YANG Jie, YIN Zhen-yu, . Numerical analysis of the impact of internal erosion on underground structures: application to tunnel leakage [J]. Rock and Soil Mechanics, 2022, 43(5): 1383-1390.
[3] QUE Yun, WENG Bin, CAI Song-lin, LIU Jin-yuan, . Analysis of preferential flow migration in unsaturated transparent soil [J]. Rock and Soil Mechanics, 2022, 43(4): 857-867.
[4] HU Cong, LONG Zhi-lin, KUANG Du-min, GONG Zhao-mao, YU Piao-yi, XU Guo-bin. Approach to 3D reconstruction of calcareous sand using 2D images of multi-view [J]. Rock and Soil Mechanics, 2022, 43(3): 761-768.
[5] ZHANG Yan-bo, XU Yue-dong, LIU Xiang-xin, YAO Xu-long, WANG Shuai, LIANG Peng, SUN Lin, TIAN Bao-zhu, . Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT [J]. Rock and Soil Mechanics, 2021, 42(10): 2659-2671.
[6] ZHAO Hong-hua, LIU Cong, TANG Xiao-wei, WEI Huan-wei, ZHU Feng, . Study of visualization measurement system of spatial deformation based on transparent soil and three-dimensional reconstruction technology [J]. Rock and Soil Mechanics, 2020, 41(9): 3170-3180.
[7] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[8] ZHOU Hang, YUAN Jing-rong, LIU Han-long, CHU Jian, . Model test of rectangular pile penetration effect in transparent soil [J]. Rock and Soil Mechanics, 2019, 40(11): 4429-4438.
[9] WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, WANG He, SUN Hao, LIU Jia-wei, WEI Yu-dong, . Fracture law of 3D printing specimen with non-consecutive joints based on CT scanning [J]. Rock and Soil Mechanics, 2019, 40(10): 3920-3927.
[10] KONG Gang-qiang, LI Hui, WANG Zhong-tao , WEN Lei,. Comparison of dynamic properties between transparent sand and natural sand [J]. , 2018, 39(6): 1935-1940.
[11] TIAN Wei, PEI Zhi-ru, HAN Nü. A preliminary research on three-dimensional reconstruction and mechanical characteristics of rock mass based on CT scanning and 3D printing technology [J]. , 2017, 38(8): 2297-2305.
[12] SHEN Hui, LUO Xian-qi, BI Jin-feng,. Numerical simulation of internal erosion characteristics of block in matrix soil aggregate [J]. , 2017, 38(5): 1497-1502.
[13] CHANG Yan, LEI Zhen-kun, ZHAO Hong-hua, YU Shen-kun, . Influences of grain sizes of fused quartz on displacement measurement accuracy of transparent soil [J]. , 2017, 38(2): 493-500.
[14] ZHOU Jun-hong ,GONG Quan-mei ,ZHOU Shun-hua ,HAN Gao-xiao , . Calculation method of limit overlying earth pressure on shield tunnel during lifting [J]. , 2016, 37(7): 1969-1976.
[15] KONG Gang-qiang , SUN Xue-jin , CAO Zhao-hu , ZHOU Yang , . Visualization comparative model tests on neutral point position of tapered pile and equal section pile [J]. , 2015, 36(S1): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .