›› 2009, Vol. 30 ›› Issue (11): 3357-3364.

• Geotechnical Engineering • Previous Articles     Next Articles

Applicability of computational methods for soil-nailing walls

YANG Yu-wen   

  1. Wuhan Geotechnical Engineering and Surveying Institute, Wuhan 430022, China
  • Received:2008-02-15 Online:2009-11-10 Published:2010-01-07

Abstract:

Many calculation methods for soil nailing walls have been developed. Having ignored applicable preconditions sometimes results in the incorrect conclusions. This paper presents in detail the typical methods widely-used in practice, and particularly the suppositions in deducing them. The preconditions are highlighted to evaluate the specific stability of soil nailing walls. Some noticeable issues to use these methods, such as reasonably selecting a computational model and specifying a slip surface in shape and further appreciating the definition of factor of safety, are presented aiming to provide some insight into the safety, economical and optimal design of soil nailing walls to propose.

Key words: soil-nailing walls, factor of safety, technical code

CLC Number: 

  • TU 470
[1] REN Jin-lan, CHEN Xi, WANG Dong-yong, LÜ Yan-nan. Instantaneous linearization strength reduction technique for generalized Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2019, 40(12): 4865-4872.
[2] LI Dian-qing, ZHOU Qiang, CAO Zi-jun, . Safety criteria for geotechnical design based on generalized reliability ratio of safety margin [J]. Rock and Soil Mechanics, 2019, 40(10): 3977-3986.
[3] XIAO Guo-feng, CHEN Cong-xing. Simulation of progressive failure process and stability analysis method for rock block [J]. , 2018, 39(8): 3001-3010.
[4] CHEN Zu-yu, LI Kang-ping, LI Xu, ZHAN Cheng-ming,. A preliminary study of allowable factor of safety in gravity retaining wall stability analysis [J]. , 2018, 39(1): 1-10.
[5] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
[6] CHEN Zu-yu , ZHAN Cheng-ming , YAO Hai-lin , CHEN Li-hong , LI Xu,. Safety criteria and standards for stability analysis of gravity retaining walls [J]. , 2016, 37(8): 2129-2137.
[7] ZHOU Yang-yi, FENG Xia-ting, XU Ding-ping, HE Ming-wu,. A simplified analysis method of block stability in large underground powerhouse [J]. , 2016, 37(8): 2391-2398.
[8] YAN Chao ,LIU Song-yu ,JI Xiao-lei,. Research on a secondary sliding surface analysis approach based on strength reduction method [J]. , 2016, 37(4): 935-942.
[9] NIAN Ting-kai , LIU Kai , HUANG Run-qiu , WANG Liang , ZHANG Yan-jun , . A generalized upper-bound limit analysis approach for stability analysis of complex multistep and multilayer slopes [J]. , 2016, 37(3): 842-849.
[10] ZHANG Fei, LI Jing-pei , SUN Chang-an, SHEN Guang-jun, LI Fei,. Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay [J]. , 2016, 37(10): 2825-2832.
[11] SHAO Long-tan, LIU Shi-yi. Extension of limit equilibrium conditions and stability analysis of geotechnical structures [J]. , 2015, 36(S1): 71-75.
[12] BAI Bing , YUAN Wei , SHI Lu , LI Jun , LI Xiao-chun,. Comparing a new double reduction method to classic strength reduction method for slope stability analysis [J]. , 2015, 36(5): 1275-1281.
[13] LIU Xiao , TANG Hui-ming , XIONG Cheng-ren , LIU Qing-bing,. A new method for reliability analysis of dynamic slope stability with considering energy-time distribution [J]. , 2015, 36(5): 1428-1443.
[14] ZHENG Hong-chun ,DENG Jian-hui ,HU Wan-yu ,CUI Yu-long ,ZHOU Yuan-fu,. Study of artesian water model for reservoir bank slope [J]. , 2015, 36(3): 869-876.
[15] LIU Hua-li , LI Hong-wei , ZHU Da-yong,. A method for calculation of anchor force in slope reinforcement [J]. , 2015, 36(2): 509-514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Yun-hua, LIU Xin-rong, SHU Zhi-le. [J]. , 2009, 30(10): 3215 -3216 .
[2] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[3] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
[6] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[7] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[10] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .