›› 2009, Vol. 30 ›› Issue (11): 3399-3405.

• Geotechnical Engineering • Previous Articles     Next Articles

A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain

LIU Xiao1,TANG Hui-ming1,LIU Yu2, 3   

  1. 1. Engineering Faculty, China University of Geosciences, Wuhan 430074, China; 2. School of Water Resources and Hydropower, Wuhan University, Wuhan 430072, China; 3. Hubei Qingjiang Hydroelectric Development Co., Ltd., Yichang 443002, China
  • Received:2009-02-26 Online:2009-11-10 Published:2010-01-07

Abstract:

As a explicit behaviors of the complicated nonlinear dynamic system,the displacement of landslide is characterized with many uncertain factors. In order to reduce the limitation of traditional method, the set pair analysis (SPA) theory combined with fuzzy-Markov theory is introduced to describe the landslide dynamic system, and then the SPA-fuzzy-Markov prediction model for landslide displacement is set up. In this new model, the fuzzy-Markov theory is applied to analyze and predict the state transition of the uncertain factor in SPA model. By this way, the precision can obtained a significant improvement. Based on the correlation coefficient and mean square deviation of eigenvalue, two verify methods for fuzzy-Markov fitting in multidimensional space are suggested. Furthermore, based on these two verification methods; the sensitivity analysis for fuzzy-Markov model in two factors, such as fuzzy interval overlap and state transfer steps, can be done. By this way, the optimal parameter combination can be recommended. As a test,the SPA-fuzzy-Markov composite model is used to analyze the displacement of Liujiatuo landslide. The results indicate that the state transfer step is more sensitive than fuzzy interval overlap in this case. It is proved this new model can conspicuously improve the short-term prediction precision than just single SPA model; and this new model is worth popularizing in geotechnical monitoring. Moreover, the introducing of fuzzy-Markov guides a new way to develop basic research of SPA theory. This new method has theoretical and practical values not only in geotechnical monitoring, but also in other related fields.

Key words: rock and soil mechanics, landslide, prediction, set pair analysis, fuzzy, Markov chain, sensitivity analysis

CLC Number: 

  • O 357.3
[1] CHEN He, ZHANG Yu-fang, ZHANG Xin-min, WEI Shao-wei, . Full-scale model experiments on anti-sliding characteristics of high-pressure grouting steel-tube micropiles [J]. Rock and Soil Mechanics, 2020, 41(2): 428-436.
[2] WANG Zhong-kai, XU Guang-li. Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages [J]. Rock and Soil Mechanics, 2020, 41(1): 285-294.
[3] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[4] CHEN Wu, ZHANG Guo-hua, WANG Hao, ZHONG Guo-qiang, WANG Cheng-tang, . Evaluation of possibility of tunnel collapse by drilling and blasting method based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(S1): 319-328.
[5] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[6] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[7] CHEN Wei-zhong, TIAN Yun, WANG Xue-hai, TIAN Hong-ming, CAO Huai-xuan, XIE Hua-dong, . Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8): 3125-3134.
[8] DENG Mao-lin, YI Qing-lin, HAN Bei, ZHOU Jian, LI Zhuo-jun, ZHANG Fu-ling, . Analysis of surface deformation law of Muyubao landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2019, 40(8): 3145-3152.
[9] CHENG Ai-ping, ZHANG Yu-shan, DAI Shun-yi, DONG Fu-song, ZENG Wen-xu, LI Dan-feng, . Space-time evolution of acoustic emission parameters of cemented backfill and its fracture prediction under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(8): 2965-2974.
[10] YUGuo, XIE Mo-wen, HU Qing-zhong, JIN Yu-peng, . A method for calculating the three-dimensional landslide speed of reservoir bank based on GIS [J]. Rock and Soil Mechanics, 2019, 40(7): 2781-2788.
[11] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[12] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[13] WANG Gang, PAN Yi-shan, XIAO Xiao-chun, . Study and application of failure characteristics and charge law of coal body under uniaxial loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1823-1831.
[14] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[15] YU Zheng, YANG Long-cai, ZHANG Yong, ZHAO Wei, . Uncertainty analysis of tunnel surrounding rock deformation considering consistency of geological heterogeneity features [J]. Rock and Soil Mechanics, 2019, 40(5): 1947-1956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .