›› 2009, Vol. 30 ›› Issue (9): 2569-2574.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on fall cone test to determine liquid limit and plastic limit of silts

GUO Ying1, 2, WANG Qi1   

  1. 1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 2. Institute of Geotechnical Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2007-11-20 Online:2009-09-10 Published:2010-03-24

Abstract:

A series of fall cone tests are performed to determine the liquid limits and the plastic limits of fine grained soil. The result shows that the log-log relationships between penetration depth of fall cone and water content of some fine grained soil are clearly nonlinear; and the liquid limits and the plastic limits can not be obtained according to the linear relation. Effective test data can not be measured within the three ranges of water contents proposed by the present standards. The dependability is necessary to discuss about the liquid-plastic limit test results obtained from three ranges. It is possible that the contradictory and wrong classification results exist by using the liquid limits and the plastic limits obtained from the test data with straight line. The further test results show that the fall cone test is suitable for the silts over 13 % clay particles content since the shear strength is mainly controlled by cohesion; and the plasticity is available from the plasticity indexes. On the contrary, the fall cone test is not suitable for the other silts and the silty sands which are similar to silts, because the shear strength is mainly controlled by particle friction. At last, some opinions about the fine grained soil classification are given.

Key words: fall cone test, silt, soil classification, liquid limit, plastic limit, plasticity, clay particles, shear strength

CLC Number: 

  • TU 411
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[3] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[4] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[5] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[6] ZHANG Chen-yang, CHEN Min, HU Ming-jian, WANG Xin-zhi, TANG Jian-jian, . Effect of fine particles content on shear strength of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202.
[7] WANG Huan, CHEN Qun, WANG Hong-xin, ZHANG Wen-ju, . Triaxial tests on fly ash with different compaction and matric suction [J]. Rock and Soil Mechanics, 2019, 40(S1): 224-230.
[8] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of ageing effect on mechanical properties of Nanyang undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(8): 2947-2955.
[9] ZHANG Feng, CHEN Guo-xing, WU Qi, ZHOU Zheng-long. Experimental study on undrained behavior of saturated silt subject to wave loading [J]. Rock and Soil Mechanics, 2019, 40(7): 2695-2702.
[10] LIU Yu, ZHANG Wei, LIANG Xiao-long, XU Lin, TANG Xin-yu. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure [J]. Rock and Soil Mechanics, 2019, 40(7): 2723-2729.
[11] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[12] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[13] WANG Jun-min, XIONG Yong-lin, YANG Qi-lai, SANG Qin-yang, HUANG Qiang. Study of the dynamic elastoplastic constitutive model for unsaturated soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2323-2331.
[14] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[15] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Long-hai, WANG Ming-nian, ZHAO Dong-ping, JI Yan-lei. Study of deformation controlling measures for large-span shallow tunnel[J]. , 2010, 31(2): 577 -581 .
[2] CHEN Yun-ping, WANG Si-jing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading[J]. , 2010, 31(4): 1030 -1034 .
[3] CHEN Yu,ZHANG Qing-he,ZHU Ji-wen,YAO Hai-ming. Coupled fluid-mechanical analysis of DOT shield tunnel construction beneath adjacent existing underpass[J]. , 2010, 31(6): 1950 -1955 .
[4] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[5] GAO Shu-sheng,QIAN Gen-bao,WANG Bin,YANG Zuo-ming,LIU Hua-xun. Numerical simulation study of mechanism for gas supplying and draining in volcanic gas reservoir in Xinjiang based on dual media model[J]. , 2011, 32(1): 276 -280 .
[6] LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Field response characteristic test of expansive soil engineering behavior under effect of atmosphere[J]. , 2009, 30(7): 2069 -2074 .
[7] SONG Yong-jun , HU Wei , WANG De-sheng , ZHOU Jun-lin. Analysis of squeezing effect of compaction piles based on modified Cam-clay model[J]. , 2011, 32(3): 811 -814 .
[8] SUN De-an,MENG De-lin,SUN Wen-jing,LIU Yue-miao. Soil-water characteristic curves of two bentonites[J]. , 2011, 32(4): 973 -0978 .
[9] LU Tao, WANG Kong-wei, LI Jian-lin. Study of failure mode of sandstone under reservoir water pressures[J]. , 2011, 32(S1): 413 -0418 .
[10] WEI Ming-yao, WANG En-yuan, LIU Xiao-fei, WANG Chao. Numerical simulation of rockburst prevention effect by blasting pressure relief in deep coal seam[J]. , 2011, 32(8): 2539 -2543 .