›› 2010, Vol. 31 ›› Issue (6): 1705-1708.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test of frozen soil wall beneath seasonally frozen soil layer

XU Xue-yan,JI Zhi-qiang,ZHANG Chen-xi   

  1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Received:2008-12-31 Online:2010-06-10 Published:2010-06-25

Abstract:

Due to the existence of the seasonally frozen soil layer, there are significant differences in the horizontal displacement and energy consumption of refrigeration between the conditions with and without it. The refrigeration consumption and deformation performance of the frozen soil wall beneath seasonally frozen soil layer were studied; and the results show that the seasonal frozen soil with temperature -12 ℃ can reduce the frozen wall’s horizontal displacement by 23.8% and reduce the refrigeration consumption by 40.4%. It is very important to consider the effects of the frozen layer, also the reductions in energy consumption and horizontal deformation of the artificial frozen wall should be considered in engineering.

Key words: seasonally frozen soil, model test, artificial frozen wall, horizontal displacement, refrigeration consumption

CLC Number: 

  • TU 445
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[3] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[4] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[5] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[6] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[7] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[8] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[9] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[10] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[11] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[12] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[13] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[14] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[15] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,SHI Bin,TANG Chao-sheng,WEI Guang-qing,WANG Bao-jun. Feasibility research on soil deformation monitoring with distributed optical fiber sensing technique[J]. , 2010, 31(6): 1781 -1785 .
[2] JIANG Quan,FENG Xia-ting,JIE Bing-hui,ZENG Xiong-hui. Interval analysis method of safety degree for mid partition in underground multi-cavern structure[J]. , 2010, 31(6): 1847 -1852 .
[3] FENG Qing-gao, ZHOU Chuan-bo, FU Zhi-feng, ZHANG Guang-cheng. Grey fuzzy variable decision-making model of supporting schemes for foundation pit[J]. , 2010, 31(7): 2226 -2231 .
[4] LIU Quan-sheng, HU Yun-hua, LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. , 2009, 30(2): 289 -296 .
[5] DU Yan-jun, FAN Ri-dong. Compressibility and permeability behavior of two types of amended soil-bentonite vertical cutoff wall backfills[J]. , 2011, 32(S1): 49 -54 .
[6] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[7] LIU Yao-ru ,HUANG Yue-qun ,YANG Qiang ,SONG Sheng-wu ,FENG Xue-min. Stability and reinforcement analysis of rock and soil slope based on deformation reinforcement theory[J]. , 2011, 32(11): 3349 -3354 .
[8] CHEN Guo-liang ,ZHANG Yong-hui ,SHENG Qian ,LIU Xiu-guo. Research of 3D modeling and visualization for highway slopes based on GIS[J]. , 2011, 32(11): 3393 -3398 .
[9] JI Mao-wei , WU Shun-chuan , GAO Yong-tao , GE Lin-lin , LI Xiao-jing . Construction monitoring and numerical simulation of multi-arch tunnel[J]. , 2011, 32(12): 3787 -3795 .
[10] ZHONG Zu-liang , LIU Xin-rong , LIU Yuan-xue , LI Peng , WANG Ji-ming. Study of damage localization of loess multi-arch tunnel’s surrounding rock under dynamic construction[J]. , 2012, 33(2): 611 -616 .