›› 2010, Vol. 31 ›› Issue (8): 2625-2629.

• Numerical Analysis • Previous Articles     Next Articles

Research on effective stress model in porous media based on fractal method

YAN Tie, LI Wei, BI Xue-liang   

  1. Key Laboratory of Enhanced Oil & Gas Recovery, Ministry of Education, Daqing Petroleum Institute, Daqing, Heilongjiang 163318, China
  • Received:2008-12-06 Online:2010-08-10 Published:2010-08-30

Abstract:

On the basis of the full study on the chinese and foreign information about the effective stress in porous media, the 2D and 3D fractal calculation models for the effective stress in deep porous media are respectively established by using fractal geometry theory. It considers the rock characteristics of the deep complex structure in petroleum engineering. The models can show the stress relationship in any pore structure rock and are the improvement to the existing model about the effective stress. In order to facilitate the on-site applications, the simplified models are further given for the effective stress fractal models in porous media. The examples of calculation shows that the culation errors for the simplified models are less than 7% and can meet the requirements of on-site oil field.An effective stress profile can be obtained by applying the simplified models to the logging data.

Key words: porous media, effective stress, Terzaghi equation, fractal geometry, fractal dimension

CLC Number: 

  • TE 31
[1] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[2] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[3] SUN Hong, SONG Chun-yu, TENG Mu-wei, GE Xiu-run. Pore evolution characteristics of soft clay under loading [J]. Rock and Soil Mechanics, 2020, 41(1): 141-146.
[4] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[5] WU Shuang-shuang, HU Xin-li, ZHANG Han, ZHOU Chang, GONG Hui, . Field test and calculation method of negative skin friction of rock-socketed piles [J]. Rock and Soil Mechanics, 2019, 40(9): 3610-3617.
[6] MAO Xiao-long, LIU Yue-tian, GUAN Wen-long, REN Xing-nan, FENG Yue-li, DING Zu-peng, . An effective stress equation for pore volume strain [J]. Rock and Soil Mechanics, 2019, 40(8): 3004-3010.
[7] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[8] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[9] XIAO Xiao-chun, FAN Yu-feng, WU Di, DING Xin, WANG Lei, ZHAO Bao-you, . Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203-4212.
[10] SHA Fei, LI Shu-cai, LIN Chun-jin, LIU Ren-tai, ZHANG Qing-song, YANG Lei, LI Zhao-feng. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media [J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269.
[11] CHEN Yu-min, CHEN Run-ze, HUO Zheng-ge, . Study of flow deformation of saturated suspended plastic sand by visualized ring shear tests [J]. Rock and Soil Mechanics, 2019, 40(10): 3709-3716.
[12] ZENG Yin, LIU Jian-feng, ZHOU Zhi-wei, WU Chi, LI Zhi-cheng, . Creep acoustic emission and damage evolution of salt rock under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(1): 207-215.
[13] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[14] DUAN Xiao-meng, ZENG Li-feng, . Bearing structure of unsaturated soil and generalized structural properties [J]. , 2018, 39(9): 3103-3112.
[15] XIANG Gao, LIU Jian-feng, LI Tian-yi, XU-YANG Meng-di, DENG Chao-fu, WU Chi,. Study of fractal and damage characteristic in the deformation and failure process of salt rack based on acoustic emission [J]. , 2018, 39(8): 2905-2912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[4] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[5] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[6] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[7] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .