›› 2010, Vol. 31 ›› Issue (8): 2677-2681.

• Numerical Analysis • Previous Articles     Next Articles

Mesomechanical research on gabion retaining wall with particle flow code

MENG Yun-wei, CHAI He-jun, JIA Xue-ming   

  1. Chongqing Communications Research & Design Institute Co., Ltd. China Merchants, Chongqing 400067,China
  • Received:2008-12-08 Online:2010-08-10 Published:2010-08-30

Abstract:

The wall surface displacement growth and the stress change in the filling of gabion retaining wall during construction process are researched. Based on the theory of particle flow code (PFC), one of the discrete element methods, a series of numerical compression tests are simulated to establish the proper mechanical parameter values for filling, filling stone, gabion. The real gabion retaining wall being prototype, the model of gabion retaining wall of back ladder model is constituted. The mechanical behavior of retaining wall is studied during the uniform load acting on the surface of filling. The simulation results show that: (a)The sensibility of horizontal stress to uniform load decreases with the increase of depth in the filling; and the stress increases earlier and more in the lower filling depth. This is because that the upper layer filling consumes mostly energy of uniform load; and the lower layer filling absorbs a small quantity of energy when macro displacement occurs in the upper layer of the gabion retaining wall.(b) The most displacement of retaining wall occurs in the filling stage. Construction management of gabion retaining wall should be emphasized. (c) The displacement is comparatively large in the upper, lesser in the lower layers not only in the filling stage but also in the concentrated uniform load; from this, it can be seen that the destruction form for gabion retaining wall of back ladder is overturning. The results provide a foundation for studying the active earth pressure of this gabion retaining wall.

Key words: gabion retaining wall, particle flow code, horizontal stress, displacement value, destruction form

CLC Number: 

  • U 417.1
[1] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[2] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[3] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[4] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[5] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, FU-hua, SUN Chao-yi, SONG Xu-gen, . Ground movement and deformation caused by underground mining in eastern area of Chengchao iron mine [J]. , 2018, 39(9): 3385-3394.
[6] LI Lu-lu, GAO Yong-tao, ZHOU Yu, JIN Ai-bing. Meso-scale modelling mechanical properties of rock-like material containing trident cracks under uniaxial compression [J]. , 2018, 39(10): 3668-3676.
[7] WANG Pei-tao, REN Fen-hua, TAN Wen-hui, YAN Zhen-xiong, CAI Mei-feng, YANG Tian-hong.. Model of roughness discrete fractures network for uniaxial compressive test and its mechanical properties [J]. , 2017, 38(S1): 70-78.
[8] WANG Jin, ZHU Ze-qi, CHEN Jian, FU Xiao-dong, FANG Qiang, . Study of in-situ mechanical properties of littoral deposit soft soil by self-boring pressuremeter [J]. , 2017, 38(S1): 195-202.
[9] WANG Xiao, WEN Zhi-jie, MIKAEL Rinne, SHEN Bao-tang, XIE Jun,. Experimental study of strength properties of coal-rock under non-uniformly distributed load [J]. , 2017, 38(3): 723-730.
[10] SUN Xiao-hao, MIAO Lin-chang, LIN Hai-shan. Arching effect of soil ahead of working face in shield tunnel in sand with various depths [J]. , 2017, 38(10): 2980-2988.
[11] LI Yang, SHE Cheng-xue, JIAO Xiao-liang. A new method for simulating rockfill roller compaction using particle flow code [J]. , 2017, 38(10): 3029-3038.
[12] JI Pei-Qi, ZHANG Xiao-Ping, ZHANG Qi,. Partide flow code analysis of effect of ductility-brittleness change on TBM cutters rock fragmentation process and its failure mode [J]. , 2016, 37(S2): 724-734.
[13] WANG Gang , WANG Rui , WU Meng-meng , WANG Peng-fei , ZHOU yu-ming,. Simulation of conventional triaxial test on coal under hydro-mechanical coupling by particle flow code [J]. , 2016, 37(S1): 537-546.
[14] LI Xiao-feng , LI Hai-bo , XIA Xiang , LIU Bo , FENG Hai-peng,. Numerical simulation of mechanical characteristics of jointed rock in direct shear test [J]. , 2016, 37(2): 583-591.
[15] ZHANG Guo-kai, LI Hai-bo, XIA Xiang, LI Jun-ru, YU Chong, LIU Jing-sen. Research on energy and damage evolution of rock under uniaxial compression [J]. , 2015, 36(S1): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[7] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[8] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[9] LI Xing-gao, LIU Wei-ning. Discussion on computing water and earth pressures on retaining wall separately[J]. , 2009, 30(2): 419 -424 .
[10] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .