›› 2010, Vol. 31 ›› Issue (11): 3656-3660.

• Numerical Analysis • Previous Articles     Next Articles

Deformation stability of three-dimensional slope based on Hoek-Brown criterion

LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming   

  1. School of Resources & Safety Engineering, Central South University, Changsha 410083, China
  • Received:2009-12-01 Online:2010-11-10 Published:2010-11-24

Abstract:

The deformation stability of three-dimensional slope is analyzed based on Hoek-Brown criterion. Rock slope at a surface mine is chosen as the analysis object. Three-dimensional numerical analysis model is established by fast Lagrangian explicit-finite-difference code of continua (FLAC3D); and some monitoring points are located in the slope. In order to obtain the accurate values of displacements for these monitoring points, an internal routine (FISH) is developed to calculate the interpolation displacements. The static and dynamic displacements after slope excavation are analyzed, which reveals the slope macroscopic deformations in different zones and gives guidance for engineering practices. Finally, the strength reduction method in the Hoek-Brown criterion is applied to calculating the safety factor of slope after excavation. In the analysis, the non-convergence of calculation is chosen to describe the failure of slope. The calculation further extents the application of strength reduction method of Hoek-Brown criterion in three-dimensional slope stability analysis.

Key words: slope stability, three-dimensional numerical simulation, strength reduction method, Hoek-Brown criterion

CLC Number: 

  • TU 457
[1] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[2] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[3] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[4] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[5] HAN Tong-chun, LIN Bo-wen, HE Lu, SU Yu-qin, . Three-dimensional slope modelling method and its stability based on coupled GIS and numerical simulation software [J]. Rock and Soil Mechanics, 2019, 40(7): 2855-2865.
[6] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[7] REN Jin-lan, CHEN Xi, WANG Dong-yong, LÜ Yan-nan. Instantaneous linearization strength reduction technique for generalized Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2019, 40(12): 4865-4872.
[8] XIAHOU Yun-shan, ZHANG Shu, TANG Hui-ming, LIU Xiao, WU Qiong, . Study of structural cross-constraint random field simulation method considering spatial variation structure of parameters [J]. Rock and Soil Mechanics, 2019, 40(12): 4935-4945.
[9] LIU Feng-tao, ZHANG Shao-fa, DAI Bei-bing, ZHANG Cheng-bo, LIN Kai-rong, . Upper bound limit analysis of soil slopes based on rigid finite element method and second-order cone programming [J]. Rock and Soil Mechanics, 2019, 40(10): 4084-4091.
[10] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[11] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
[12] DAI Zhong-hai, HU Zai-qiang, YIN Xiao-tao, WU Zhen-jun,. Deformation stability analysis of gentle reverse inclined layer-like rock slope under engineering load [J]. , 2018, 39(S1): 412-418.
[13] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[14] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[15] LI Wei, XU Qiang, WU Li-zhou, LI Si-qi, . Influence of seepage forms of confined water on translational landslide [J]. , 2018, 39(4): 1401-1410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] YANG Ai-wu,YAN Shu-wang,DU Dong-ju,ZHAO Rui-bin,LIU Ju. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. , 2010, 31(9): 2930 -2934 .
[5] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[6] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[7] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[8] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[9] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[10] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .