›› 2009, Vol. 30 ›› Issue (6): 1583-1589.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Discussion on mechanism and effect of Rayleigh wave on soil subjected to impact loading

NIU Zhi-rong1,LU Guo-yun2   

  1. 1. College of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, China; 2. Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2007-11-23 Online:2009-06-10 Published:2011-03-09

Abstract:

It is nonnegligible that the Rayleigh wave (R-wave) appearing and transmitting in soil subjected to impact loading (dynamic consolidation in engineering, DC for short). The research on mechanism and effect of R-wave on foundation is made in DC, where the transmitting characteristics,the influenced depth, the laws of deformation and volume variations of R-wave are discussed by means of the vibration characteristics of soil. It turns out that R-wave in DC is effective for the foundation; it is able to influence the depth about one wavelength, and can compact the soil under the hammer. On the other hand, it has some negative effects on the surface of foundation beside the tamping pit. The solving method of dispersion curve of R-wave in the layered foundation and the method of estimating the influenced depth of DC scientifically can be obtained. But Menard’s conventional formula can’t make a precise calculation of the depth. The practical examples are provided to verify the conclusion that DC can benefit more than destructive effect from R-wave.

Key words: impact loading, dynamic consolidation, Rayleigh wave, wavelength, effective reinforced wave

CLC Number: 

  • TU 435
[1] ZHOU Feng-xi, LIU Hong-bo, CAI Yuan-qiang, . Analysis of propagation characteristics of Rayleigh waves in saturated porothermoelastic media [J]. Rock and Soil Mechanics, 2020, 41(1): 315-324.
[2] ZHOU Feng-xi, LIU Hong-bo, . Propagation characteristics of Rayleigh waves in unsaturated soils [J]. Rock and Soil Mechanics, 2019, 40(8): 3218-3226.
[3] CHAI Hua-you, KE Wen-hui, CHEN ELTON J., WANG Zhang-qiong, HUANG Xiang-guo, . A new approach to evaluate dispersion curve of Rayleigh waves of the fundamental mode in regularly layered elastic media [J]. Rock and Soil Mechanics, 2019, 40(12): 4873-4880.
[4] LI Zhi-yuan, LI Jian-bo, LIN Gao, . Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM [J]. , 2018, 39(11): 4242-4250.
[5] CHAI Hua-you, LI Tian-bin, CHEN Elton J., ZHANG Dian-ji,. Excitability of Rayleigh waves in half spaces under buried sources [J]. , 2017, 38(9): 2480-2486.
[6] XU Ying, LIANG Jian-wen, LIU Zhong-xian,. Diffraction of Rayleigh waves around a circular cavity in poroelastic half-space [J]. , 2017, 38(8): 2411-2425.
[7] CHAI Hua-you, KE Wen-hui, HUANG Xiang-guo, LI Zhong-chao, LI Tian-xiang,. Analysis of propagation behavior of Rayleigh waves activated by surface sources [J]. , 2017, 38(2): 325-332.
[8] ZHANG Min, SHANG Wei, ZHOU Zhong-chao, GUO Cheng,. Propagation characteristics of Rayleigh waves in double-layer unsaturated soils [J]. , 2017, 38(10): 2931-2938.
[9] CHAI Hua-you, LI Tian-bin, ZHANG Dian-ji, CHEN Elton J., WU Qiao-yun, CHAI Xiu-wei,. Effect of surface permeability of saturated porous media on behaviour of surface waves using thin layer method [J]. , 2016, 37(12): 3371-3379.
[10] LUO Zhou-quan ,CHEN Jie ,XIE Cheng-yu ,WANG Wei ,LIU Xiao-ming,. Mechanism of impact-induced damage of main chute and its experimental validation [J]. , 2015, 36(6): 1744-1751.
[11] LIU Yong-jian,FU Na,LIN Hui. Law study of dynamic discharge water of marine soft clay under impact loading [J]. , 2014, 35(S1): 71-77.
[12] QIAN Xiao-min,LI Zhang-ming,ZENG Wen-xiu. In-situ tests and analyses of reasonable covering thickness for muck foundation under impact load [J]. , 2014, 35(3): 841-846.
[13] LIU Hong-jun ,WANG Hu ,ZHANG Min-sheng ,XU Guo-hui . Analysis of wave-induced dynamic response of silty seabed in Yellow River delta [J]. , 2013, 34(7): 2065-2071.
[14] YANG Tian-chun,. Appendant layer method for dispersion characteristics of Rayleigh wave in irregular profiles [J]. , 2013, 34(12): 3365-3371.
[15] CHEN Fu-yun,LI Chuan,CHEN Er-kuo,XIONG Xin,LI Ying-na. Dual-diaphragm fiber Bragg grating soil pressure sensor [J]. , 2013, 34(11): 3340-3344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Kai-sheng,SHA Ai-min. Research on resilient modulus test of compacted loess[J]. , 2010, 31(3): 748 -752 .
[2] WU Huo-zhen, FENG Mei-guo, JIAO Yu-yong, LI Hai-bo. Analysis of sliding mechanism of accumulation horizon landslide under rainfall condition[J]. , 2010, 31(S1): 324 -329 .
[3] XU Xing-hua, SHANG Yue-quan, WANG Ying-chao. Research on comprehensive evaluation decision system for landslide disaster[J]. , 2010, 31(10): 3157 -3164 .
[4] YAN Ke-zhen, LIU Neng-yuan, XIA Tang-dai. Discriminant analysis model for prediction of sand soil liquefaction during earthquake[J]. , 2009, 30(7): 2049 -2052 .
[5] CHEN Zhi-qiang, ZHANG Yong-xing, ZHOU Jian-ying. Experimental study of deep tunnel surrounding rock rockburst proneness with similarity material simulating method based on digital speckle correlation technique[J]. , 2011, 32(S1): 141 -148 .
[6] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[7] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[8] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[9] WEI Hou-zhen, YAN Rong-tao, CHEN Pan, TIAN Hui-hui, WU Er-lin, WEI Chang-fu. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. , 2011, 32(S2): 198 -203 .
[10] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .