›› 2009, Vol. 30 ›› Issue (7): 2000-2004.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shear strength behavior of overconsolidated clay in ring shear tests

SUN Tao1, 2, HONG Yong2, 3, LUAN Mao-tian1, 2, CHEN Rong1, 2   

  1. 1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 2. Institute of Geotechnical Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China 3. School of Civil Engineering, Qingdao Technological University, Qingdao 266000, China
  • Received:2007-12-07 Online:2009-07-10 Published:2011-03-10

Abstract:

Detailed studies were conducted on shear peak strength and residual strength of overconsolidated saturated clays at different overconsolidation ratios, normal stresses and shear speeds by employing ring shear apparatus. The residual strength behaviors before and after applying cyclic loads were also investigated. Test results indicate that: overconsolidation ratios have obvious effects on shear peak strength and residual strength of overconsolidated clays; under the same shear speed, shear displacements reaching residual state depend on the present stress state, not being relevant with stress history; with shear speed becoming faster, both peak strength and shear displacement reaching residual state increase, while shear speed has no effects on residual stress; Residual strengths after applying cyclic loads decrease differently, the largest decrease up to 12.2 %. When shear surfaces are irregular shear bands, residual strengths increase after applying cyclic loads.

Key words: ring shear test, overconsolidated clay, shear speed, cyclic load, shear peak strength, residual strength

CLC Number: 

  • TU 443
[1] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[2] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[3] XIE Hui-hui, XU Zhen-hao, LIU Qing-bing, HU Gui-yang, . Evolution of peak strength and residual strength of weak expansive soil under drying-wetting cycle paths [J]. Rock and Soil Mechanics, 2019, 40(S1): 245-252.
[4] TANG Xiao-wu, LIU Jiang-nan, YANG Xiao-qiu, YU Yue. Theoretical study of dynamic pore water pressure dissipation characteristics of open-hole pipe pile [J]. Rock and Soil Mechanics, 2019, 40(9): 3335-3343.
[5] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[6] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[7] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[8] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[9] ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long, . Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2019, 40(2): 610-615.
[10] DONG Jian-xun, LIU Hai-xiao, LI Zhou. A bounding surface plasticity model of sand for cyclic loading analysis [J]. Rock and Soil Mechanics, 2019, 40(2): 684-692.
[11] CHEN Yu-min, CHEN Run-ze, HUO Zheng-ge, . Study of flow deformation of saturated suspended plastic sand by visualized ring shear tests [J]. Rock and Soil Mechanics, 2019, 40(10): 3709-3716.
[12] YANG Xiao-bin, CHENG Hong-ming, LÜ Jia-qi, HOU Xin, NIE Chao-gang, . Energy consumption ratio evolution law of sandstones under triaxial cyclic loading [J]. Rock and Soil Mechanics, 2019, 40(10): 3751-3757.
[13] GAO Yuan, LIU Hai-xiao, LI Zhou. An explicit integration algorithm of the bounding-surface plasticity model for saturated sand under cyclic loading [J]. Rock and Soil Mechanics, 2019, 40(10): 3951-3958.
[14] LIU Bin, XU Hong-fa, DONG Lu, , MA Yu-qing, , LI Ke-liang, . A nonlinear rheological model of rock salt based on DS-dashpot under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(S2): 107-114.
[15] SHI Gang, LIU Zhong-yu, LI Yong-hui. One-dimensional rheological consolidation of soft clay under cyclic loadings considering non-Darcy flow [J]. , 2018, 39(S1): 521-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[5] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[6] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[7] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[8] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .