›› 2009, Vol. 30 ›› Issue (7): 2126-2132.

• Numerical Analysis • Previous Articles     Next Articles

3D finite element simulation for influence of thermo-hydro-mechanical coupling on migration in geological disposal of nuclear waste

ZHANG Yu-jun   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2008-04-01 Online:2009-07-10 Published:2011-03-10

Abstract:

A 2D model for coupling thermo-hydro-mechanical-migration and the relevant FEM code made by author is extended to 3D. From the viewpoint of methodology study, a 3D numerical simulation for the coupled thermo-hydro-mechanical-migratory processes in a simple model of geological disposal of nuclear waste, which is taken for example, is carried out. The distributions and changes of the temperature, saturation, nuclide concentration, pore pressure, displacement, normal stress and flow velocity in the near field are investigated. It is considered that the computation results are in keeping with the regular pattern. Finally, some conclusions are drawn:in order to simulate the migration of radioactive nuclide accurately,it is necessary to analyze temperature field,seepage field,stress field and nuclide concentration field by coupled method;higher compressive stresses will appear in the neighborhood of disposal pit wall after several decades from the embedment of nuclear waste;in buffer layer the period during which nuclide concentration reaches relative stabilization is much longer than those during which temperature and saturation reach relative stabilization respectively.

Key words: rock mechanics, nuclear waste, geological disposal, thermo-hydro-mechanical-migratory coupling, 3D model, finite element analysis

CLC Number: 

  • TU 45
[1] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[2] YE Guan-bao, ZHENG Wen-qiang, ZHANG Zhen, . Investigation on distribution of negative friction of frictional piles in large filling sites [J]. Rock and Soil Mechanics, 2019, 40(S1): 440-448.
[3] SEISUKE Okubo, TANG Yang, XU Jiang, PENG Shou-jian, CHEN Can-can, YAN Zhao-song, . Application of 3D-DIC system in rock mechanic test [J]. Rock and Soil Mechanics, 2019, 40(8): 3263-3273.
[4] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[5] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[6] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[7] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[8] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[9] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[10] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[11] TAN Yun-zhi, LI Hui, WANG Pei-rong, PENG Fan, FANG Yan-fen, . Hydro-mechanical performances of bentonite respond to heat-treated history [J]. Rock and Soil Mechanics, 2019, 40(2): 489-496.
[12] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[13] LI Xiao-zhao, SHAO Zhu-shan, QI Cheng-zhi, . Study on rock crack damage and confining pressure effects on shear fracture band [J]. Rock and Soil Mechanics, 2019, 40(11): 4249-4258.
[14] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. Study on strength parameters and dilation angle evolution models in hard rock elasto-plastic deformation and failure process [J]. Rock and Soil Mechanics, 2019, 40(11): 4401-4411.
[15] MA Peng-fei, LI Shu-chen, ZHOU Hui-ying, ZHAO Shi-sen. Simulations of crack propagation in rock-like materials using modified peridynamic method [J]. Rock and Soil Mechanics, 2019, 40(10): 4111-4119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[3] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[4] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[5] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[6] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[7] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[8] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[9] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[10] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .