›› 2009, Vol. 30 ›› Issue (S1): 10-14.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research status of dynamic properties of artificial frozen soil and its significance

MA Qin-yong   

  1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
  • Received:2009-03-20 Online:2009-08-10 Published:2011-03-16

Abstract:

The research for dynamic properties of frozen soil is the development of statics, and it is the important basis of analyzing dynamic instability. The research status for mechanical properties of frozen soil at home and abroad is summarized. Static properties of frozen soil are mostly researched, dynamic properties of frozen soil focus on the low frequency or small amplitude vibration tests. According to the magnitude of strain rate, the dynamic mechanical properties of frozen soil are researched by adopting split Hopkinson pressure bar test under high strain rate. It is an important research for the safe, effective and rapid construction in frozen construction of coal mine and artificially frozen engineering, and it is of great significance both in research and application.

Key words: artificial frozen soil, dynamic properties, engineering application, impact loading

CLC Number: 

  • P 642.14
[1] CHEN Bing-rui, WU Hao, CHI Xiu-wen, LIU Hui, WU Meng-die, YAN Jun-wei, . Real-time recognition algorithm for microseismic signals of rock failure based on STA/LTA and its engineering application [J]. Rock and Soil Mechanics, 2019, 40(9): 3689-3696.
[2] CHEN Zheng-han, GUO Nan, . New developments of mechanics and application for unsaturated soils and special soils [J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
[3] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[4] LI Shu-cai, HE Peng, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, XU Fei, LIU Hong-liang. Reliability analysis method of sub-classification of tunnel rock mass and its engineering application [J]. , 2018, 39(3): 967-376.
[5] LIN Shan, LI Chun-guang, SUN Guan-hua, WANG Shui-lin, YANG Yong-tao,. Complementary algorithm for 2D contact problems and its engineering application [J]. , 2018, 39(10): 3863-3874.
[6] HE Peng , XIAO Jie , ZHANG Jian , XU Fei , ZHANG Yun-peng,. FAHP model of dynamic risk assessment for expansive soil cut slope stability and its engineering application [J]. , 2016, 37(S2): 502-512.
[7] LI Zhao-feng,LI Shu-cai,LIU Ren-tai,JIANG Yu-jing,ZHAGN Qing-song,YANG Lei,SHA Fei,CHEN Bo-han,WANG Hong-liang,. Development of the grouting material for reinforcing water-rich broken rock masses and its application [J]. , 2016, 37(7): 1937-1946.
[8] GAO Wen-sheng, LIU Jin-li, ZHAO Xiao-guang, QIU Ming-bing. Some understanding of prestressed concrete pipe pile in engineering application [J]. , 2015, 36(S2): 610-616.
[9] LUO Zhou-quan ,CHEN Jie ,XIE Cheng-yu ,WANG Wei ,LIU Xiao-ming,. Mechanism of impact-induced damage of main chute and its experimental validation [J]. , 2015, 36(6): 1744-1751.
[10] LIU Yong-jian,FU Na,LIN Hui. Law study of dynamic discharge water of marine soft clay under impact loading [J]. , 2014, 35(S1): 71-77.
[11] XIA Kai-zong, CHEN Cong-xin, ZHOU Yi-chao, WANG Yong-wei, FU Hua, OU Zhe. An algorithm of obtaining shear strength of rock mass based on nonlinear relationship proposed by Hoek and its application to engineering [J]. , 2014, 35(6): 1743-1750.
[12] MA Qin-yong, ZHANG Jing-shuang, CHEN Wen-feng, YUAN Pu. Analysis of SHPB test and impact compression in confining pressure for artificial frozen soil [J]. , 2014, 35(3): 637-640.
[13] QIAN Xiao-min,LI Zhang-ming,ZENG Wen-xiu. In-situ tests and analyses of reasonable covering thickness for muck foundation under impact load [J]. , 2014, 35(3): 841-846.
[14] LI Ming , MAO Xian-biao , CAO Li-li , MAO Rong-rong , TAO Jing,. Experimental study of mechanical properties on strain rate effect of sandstones after high temperature [J]. , 2014, 35(12): 3479-3488.
[15] LI Shou-ju ,YU Shen ,ZHANG Jun ,TIAN Ze-run,. Empirical models of creep settlements of concrete-faced rockfill dam and their applications [J]. , 2013, 34(S2): 252-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[5] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[6] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[7] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[8] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[9] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .