Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (12): 3407-3418.doi: 10.16285/j.rsm.2021.0555

• Numerical Analysis • Previous Articles     Next Articles

Failure and instability mechanism of anchored surrounding rock for deep chamber group with super-large section under dynamic disturbances

LIU Xue-sheng1, 2, FAN De-yuan1, 2, TAN Yun-liang1, 2, WANG Xin1, 2, ALEXEY Agafangelovich3   

  1. 1. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 3. College of Mining and Mechatronics, Kuzbass State Technical University, Kemerovo 650000, Russia
  • Received:2021-04-14 Revised:2021-07-20 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Key R&D Program of China(2018YFC0604703).

Abstract: The interaction of super-large section chamber group in deep and close-distance condition will lead to stress concentration and wide failure range of surrounding rock, especially under dynamic disturbances. In this paper, numerical simulation software FLAC3D is used to establish the calculation model based on the field condition of coal gangue separation system in Longgu Coal Mine. The deformation and failure evolution of chamber group under different chamber spacing and dynamic loads are studied by using built-in dynamic module. The simulation results show that: With the decrease of chamber spacing, the deformation and failure degree of surrounding rock gradually increases, and the overall failure and instability occur eventually. Compared with the static load, the range of critical spacing under dynamic disturbance is enlarged by 33.3%?50%. Meanwhile, the response of anchored surrounding rock is gradually intensified with the dynamic load strength increase, and the critical strength of failure and instability is about 4.0?4.5 MPa. Based on the elastic-plastic mechanics and elastic wave theories, the mechanical model of anchored surrounding rock under dynamic and static loads is established. The failure and instability criterion are obtained. The anchored surrounding rock can be divided into three states: overall stability, static failure and dynamic failure. On this basis, the analytical expression of critical distance between failure and instability is presented. Finally, in-site calculation and field monitoring verify the rationality and feasibility of the theoretical analysis. This study provides a reference for layout design and stability control of super-large section chamber group.

Key words: dynamic disturbance, super-large section, chamber group, deformation and failure, instability

CLC Number: 

  • TD313
[1] XIONG Fei, LIU Xin-rong, LIU Wen-wu, ZHONG Zu-liang, YANG Zhong-ping, WANG Nan-yun, WANG Hao, XUE Yi. Mechanism of mining-induced failure and instability of steep karst slope with deep and large fissures [J]. Rock and Soil Mechanics, 2025, 46(8): 2516-2531.
[2] ZHANG Xin-ye, LIU Zhi-wei, WENG Xiao-lin, LI Xuan-cong, ZHAO Jian-chong, LIU Xiao-guang. Stability and failure mode analysis of tunnel face in composite ground with upper sand and lower clay layers [J]. Rock and Soil Mechanics, 2025, 46(11): 3637-3648.
[3] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[4] HUANG Ye-ning, DENG Hua-feng, LI Jian-lin, WANG Ming-yang, ZHANG Jing-yu, ZHOU Shu-huan, XU Peng-fei. Experimental study on time-delayed failure of sandstone under the combined action of static load and dynamic disturbance [J]. Rock and Soil Mechanics, 2025, 46(1): 213-224.
[5] KONG Yang, RUAN Huai-ning, WANG Zhang-chun, . Experimental study on failure pattern and anisotropic characteristics of simulated columnar jointed basalt samples [J]. Rock and Soil Mechanics, 2024, 45(S1): 259-266.
[6] WU Jiu-jiang, XIAO Lin, WANG Li-juan, ZHANG Yi, . Deformation characteristics and failure modes of nodular diaphragm walls based on particle image velocimetry technology [J]. Rock and Soil Mechanics, 2024, 45(9): 2707-2718.
[7] FAN Lai-yu, WU Zhi-jun, CHU Zhao-fei, WENG Lei, WANG Zhi-yang, LIU Quan-sheng, CHEN Jie, . Creep characteristics and damage constitutive model of red sandstone under dynamic disturbance [J]. Rock and Soil Mechanics, 2024, 45(6): 1608-1622.
[8] YIN Shan, SONG Da-zhao, WANG En-yuan, HE Xue-qiu, LI Zhong-hui, LIU Xiao-fei, LIU Yu-bing, . Study on the magnetic field response law of sandstone during deformation and failure [J]. Rock and Soil Mechanics, 2024, 45(6): 1803-1812.
[9] JIANG Quan, LIU Qiang, . Mechanical similarity distortion mapping principle and case analysis for underground cavern physical simulation of deformation and failure [J]. Rock and Soil Mechanics, 2024, 45(1): 20-37.
[10] RONG Hao-yu, WANG Wei, LI Gui-chen, XU Jia-hui, LIANG Dong-xu, . Micromechanical characteristics of hydration instability of rock-anchorage agent structure [J]. Rock and Soil Mechanics, 2023, 44(3): 784-798.
[11] ZHOU Xiang, CAI Jing-sen, MA Wei-cheng, XIAO Hao-wen, . Influence of material composition characteristics on the deformation and failure of gravel soil slopes [J]. Rock and Soil Mechanics, 2023, 44(2): 531-540.
[12] WANG Bei-fang, JIANG Jia-qi, LIU Xue-sheng, LIANG Bing, ZHANG Jing. Analysis and application of sheared and fallen roof structure during shallowly buried fully mechanized mining under thick loose bed and thin base rock [J]. Rock and Soil Mechanics, 2023, 44(10): 3011-3021.
[13] YANG Xiao-juan, MA Gang, ZHOU Heng, LU Xi, LI Yi-ao, ZHOU Wei, . Study on precursors of diffuse instability of granular materials based on complex network theory [J]. Rock and Soil Mechanics, 2022, 43(7): 1978-1988.
[14] CUI Guo-jian, ZHANG Chuan-qing, ZHOU Hui, LU Jing-jing, GAO Yang, HU Ming-ming, HU Da-wei, . Development and application of multifunctional shear test apparatus for rock discontinuity under dynamic disturbance loading [J]. Rock and Soil Mechanics, 2022, 43(6): 1727-1737.
[15] ZHU Xue-liang, SHAO Sheng-jun, SHEN Xiao-jun, SHAO Shuai, LIU Xiao-kang, . Three-dimensional stability limit analysis of cracked loess slopes [J]. Rock and Soil Mechanics, 2022, 43(10): 2735-2743.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!