Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (7): 2140-2152.doi: 10.16285/j.rsm.2023.1300

• Geotechnical Engineering • Previous Articles     Next Articles

Contributions of increased rainfall and rising air temperature on hydrothermal dynamics in the permafrost of the Qinghai-Xizang Plateau

ZHANG Ming-li1, 2, LEI Bing-bing1, 3, ZHOU Feng-xi1, HOU Yan-dong1, FENG Wei1, ZHOU Zhi-xiong1   

  1. 1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou University, Lanzhou, Gansu 730050, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 3. Xinjiang Transportation Planning Surveying and Design Institute, Urumqi, Xinjiang 830000, China
  • Received:2023-08-30 Accepted:2024-01-04 Online:2024-07-10 Published:2024-07-23
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42261028, 42361018), the Chinese Academy of Sciences “Light of West China” Program for Western Young Scholars (23JR6KA027, 22JR9KA033) and the Longyuan Youth Innovation and Entrepreneurship Talent (Individual) Project (2023LQGR18).

Abstract: Driven by human activities and global climate change, the climate on the Qinghai-Xizang Plateau is experiencing a warming and humidifying trend. It significantly impacts the thermal-moisture dynamics in the active layer of the permafrost, which in turn affects the ecological environment of cold regions and the stability of cold region engineering. While the effect of air temperature on permafrost thaw has been well quantified, the processes and mechanisms behind the thermal-moisture response of the permafrost under the combined influence of increased rainfall and rising air temperature remain contentious and largely unknown. A coupled model was applied to quantify the impacts of increased rainfall, rising air temperature, and their compound effects on the thermal-moisture dynamics in the active layer, considering the sensible heat of rainwater in the ground surface energy balance and water balance process. The results indicate that the compound effect of warming and humidifying resulted in a significant increase in surface net radiation and evaporation latent heat, a more significant decrease in surface sensible heat, and a smaller impact of rainfall sensible heat, leading to an increase in surface soil heat flux. The compound effect of warming and humidifying leads to a significant increase in the liquid water flux with temperature gradient. The increase in liquid water flux due to the temperature gradient is larger than that of warming alone but smaller than the effect of humidifying alone. Warming and humidifying result in a smaller increase in soil moisture content during the warm season compared to rainfall increases alone. The thermal conductivity heat flux in the active layer increases significantly during the cold season but less than the effect of warming alone. The convective heat flux of liquid water flux increases noticeably during the warm season but less than the effect of rainfall increases alone. Increased rainfall significantly cools the soil during the warm season, while both warming and humidifying lead to a more pronounced warming effect on the soil during the cold season than during the warm season. An increase in the average annual temperature by 1.0℃ leads to a downward shift of the permafrost table by 10 cm, while an increase in rainfall by 100 mm causes an upward shift of the permafrost table by 8 cm. The combined effect of warming and humidifying results in a downward shift of the permafrost table by 6 cm. Under the influence of climate warming and humidifying, the cooling effect of increased rainfall on permafrost is relatively small, and the warming effect of increased temperature still dominates.

Key words: permafrost, climate warming and wetting, ground surface energy balance, thermal-moisture dynamics, Qinghai-Xizang Plateau

CLC Number: 

  • TU 445
[1] ZHANG Ming-li, LEI Bing-bing, ZHOU Zhi-xiong, ZHOU Feng-xi, HOU Yan-dong, . Model study on rainfall effect on hydrothermal dynamics of permafrost considering rainwater sensible heat [J]. Rock and Soil Mechanics, 2023, 44(5): 1530-1544.
[2] DONG Jian-hua, SHI Li-jun, WU Xiao-lei, WANG Lu, . Experimental study on cooling and mechanical effects of new frame ventilation anchor bolt supporting permafrost slope [J]. Rock and Soil Mechanics, 2023, 44(11): 3141-3150.
[3] ZHANG Ming-li, ZHOU Zhi-xiong, ZHOU Feng-xi, LEI Bing-bing, . Effects of increased summer rainfall on the thermal-moisture dynamics of permafrost active layer [J]. Rock and Soil Mechanics, 2022, 43(12): 3335-3346.
[4] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, YUE Guo-dong, WANG Bin, GAO Qiang. Response of hydrothermal activity in different types of soil at ground surface to rainfall in permafrost region [J]. Rock and Soil Mechanics, 2020, 41(5): 1549-1559.
[5] TANG Li-yun, WANG Xin, QIU Pei-yong, JIN Long, . Study on shear performance of soil-rock mixture at the freezing-thawing interface in permafrost regions [J]. Rock and Soil Mechanics, 2020, 41(10): 3225-3235.
[6] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[7] WANG Hong-lei, SUN Zhi-zhong, LIU Yong-zhi, WU Gui-long, . The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway [J]. Rock and Soil Mechanics, 2019, 40(7): 2815-2824.
[8] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, HOU Yan-dong, WANG Bin, GUO Zong-yun , WEI Hao-tian, . Mechanism of climate warming on thermal-moisture dynamics of active permafrost layer considering effect of rainfall [J]. Rock and Soil Mechanics, 2019, 40(5): 1983-1993.
[9] GAO Qiang, WEN Zhi, WANG Da-yan, NIU Fu-jun, XIE Yan-li, GOU Ting-tao,. Study on the instability process of slopes in permafrost regions by direct shear test of freezing-thawing interface [J]. , 2018, 39(8): 2814-2822.
[10] TIAN Ya-hu, HU Kang-qiong, TAI Bo-wen, SHEN Yu-peng, WANG Teng-fei, . Influence of different factors on horizontal frost heaving force against canal [J]. , 2018, 39(2): 553-560.
[11] ZHANG Kai-jian, SUN Hong, NIU Fu-jun, GE Xiu-run,. Seismic response of low-angle soil slope in permafrost regions [J]. , 2017, 38(12): 3469-3475.
[12] LIU Ming-hao, NIU Fu-jun, LIN Zhan-ju, LUO Jing. Long-term cooling effect and deformation characteristics of a U-shaped crushed rock embankment in warm permafrost regions [J]. , 2017, 38(11): 3304-3310.
[13] GUO Chun-xiang, WU Ya-ping, JIANG Dai-jun. Analysis of response of pile vertical bearing capacity to short-term climatic anomaly in permafrost regions [J]. , 2015, 36(S2): 377-382.
[14] YU De-zhong , CHENG Pei-feng , JI Cheng , CUI Zhi-gang,. Experimental study of bearing capacity of island permafrost pile foundation before and after refreezing in low altitude and high latitude area [J]. , 2015, 36(S2): 478-484.
[15] LI Guo-yu , MA Wei , WANG Xue-li , JIN Hui-jun , WANG Yong-ping , ZHAO Ying-bo , CAI Yong-jun , ZHANG Peng,. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline [J]. , 2015, 36(10): 2963-2973.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!