Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (6): 1934-1942.doi: 10.16285/j.rsm.2024.1363

• Numerical Analysis • Previous Articles     Next Articles

Dispersion and attenuation of waves in saturated anisotropic fractured rocks

CHEN Yi-wei1, 2, DONG Ping-chuan1, 2   

  1. 1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China; 2. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2024-11-04 Accepted:2024-12-30 Online:2025-06-11 Published:2025-06-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42141009).

Abstract: Seismic waves exhibit strong attenuation and velocity dispersion when they propagate through porous rocks saturated with a fluid. The main cause of such energy dissipation is fluid flow in the pore space, known as squirt flow. A simple and accurate dual crack analytical model is established for the squirt flow caused by the fluid flow in the microcracks with different aspect ratios commonly found in rocks. The effective compliance matrix of the dry dual crack model is constructed using micromechanics. By analyzing the fluid pressure distribution in the dual crack, crack stiffness relaxation in the wet-skeleton dual crack model is calculated using a one-dimensional fluid pressure diffusion equation, with the diameter of the compliant crack serving as the characteristic length for squirt flow in the dual crack model. The attenuation and dispersion characteristics of the frequency-dependent stiffness component of the dual crack model and the torus stiff pore model are compared, and three-dimensional simulations validate the accuracy of the dual crack model. Parameter analysis shows that as the volume of the stiff crack increases, the attenuation of the stiffness component of the dual crack also increases. The application of the dual crack model in velocity prediction is introduced, and its reliability is validated by comparing it with experimental data and the predictions of the torus stiff pore model.

Key words: squirt flow model, dual crack model, stiff relaxation, dispersion and attenuation, pore structure, velocity prediction

CLC Number: 

  • TU452
[1] YANG Liu, JI Ming-xiu, ZHAO Yan, GENG Zhen-kun, LI Si-yuan, MA Xiong-de, ZHANG Qian, . Influence mechanism of tight sandstone pore structure on two-phase displacement characteristics and CO2 storage efficienc [J]. Rock and Soil Mechanics, 2025, 46(4): 1187-1195.
[2] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[3] SUN Yin-lei, LI Zhi-fei, CHEN Yan-ge, DU Qing-ru, TIAN Ke-meng, CHEN Jun-lei, ZHANG Xian-wei, . Effect of mineral composition on soil-water characteristics of red soil [J]. Rock and Soil Mechanics, 2025, 46(10): 3117-3131.
[4] LI Pin-liang, XU Qiang, LIU Jia-liang, HE Pan, JI Xu, CHEN Wan-lin, PENG Da-lei, . Experimental study on the micromechanism of salt influence on the permeability of remolded loess [J]. Rock and Soil Mechanics, 2023, 44(S1): 504-512.
[5] LI Bo-nan, FU Wei, ZHANG Xue-bing, . Propagation characteristics of elastic waves in warm ice-rich frozen soil [J]. Rock and Soil Mechanics, 2023, 44(7): 1916-1924.
[6] ZHAO Yan, YANG Liu, XI Ru-ru, GENG Zhen-kun, ZHANG Qian, MA Xiong-de, . CO2-H2O two-phase displacement characteristics of low permeability core using nuclear magnetic resonance and magnetic resonance imaging techniques [J]. Rock and Soil Mechanics, 2023, 44(6): 1636-1644.
[7] MA Deng-hui, HAN Xun, GUAN Yun-fei, TANG Yi, . Pore structure and seepage characteristics analysis of coral sand particles [J]. Rock and Soil Mechanics, 2022, 43(S2): 223-230.
[8] LI Tian-guo, KONG Ling-wei, WANG Jun-tao, WANG Feng-hua, . Trimodal pore structure evolution characteristics and mechanical effects of expansive soil in seasonally frozen areas based on NMR test [J]. Rock and Soil Mechanics, 2021, 42(10): 2741-2754.
[9] FANG Ying-guang, CHEN Jian, GU Ren-guo, BA Ling-zhen, SHU Hao-kai, . Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area [J]. Rock and Soil Mechanics, 2020, 41(8): 2547-2554.
[10] CAI Guo-qing, WU Tian-chi, WANG Ya-nan, LIU Yi, LI Jian, ZHAO Cheng-gang, . Model of the microstructure evolution of unsaturated compacted soils with double-pore structure [J]. Rock and Soil Mechanics, 2020, 41(11): 3583-3590.
[11] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[12] LI Ling, LIU Jin-quan, LIU Zao-bao, LIU Tao-gen, WANG Wei, SHAO Jian-fu, . Experimental investigations on compaction properties of sand-clay mixture at high pressure [J]. Rock and Soil Mechanics, 2019, 40(9): 3502-3514.
[13] LIU Yu, ZHANG Wei, LIANG Xiao-long, XU Lin, TANG Xin-yu. Determination on representative element volume of Nanjing silty-fine sand for its spatial pore structure [J]. Rock and Soil Mechanics, 2019, 40(7): 2723-2729.
[14] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[15] LI Jing, KONG Xiang-chao, SONG Ming-shui, WANG Yong, WANG Hao, LIU Xu-liang, . Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation [J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!