Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3632-3640.doi: 10.16285/j.rsm.2020.0093

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on the microscopic characteristics of three-dimensional pores in coral sand

CUI Xiang1, 2, HU Ming-jian1, ZHU Chang-qi1, WANG Ren1, WANG Xin-zhi1, WANG Tian-min1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41877271, 41572304) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13010301).

Abstract: The pore is the place where the seepage occurs in the porous medium, which is inevitably related to the permeability of the medium. Due to the special material source and formation process, coral sand has completely different pore characteristics compared with terrestrial sand. Through a series of microscopic studies, the reason for the special pore properties of coral sand in essence was revealed. It is found that it is reasonable to describe the properties of pores from the aspect of pore shape, pore throat size and global connectivity. Among them, pore shape is measured by the shape factor. Pore throat size includes pore radius and throat radius. Global connectivity in the porous media is described by coordination numbers. Particle shape and particle surface roughness are the main factors affecting pore shape, pore throat size and global connectivity. Particle shape mainly affects pore shape, throat size, pore throat size dispersion and the uniform distribution of connectivity in the medium. Particle surface roughness mainly affects pore shape, pore shape dispersion, pore size and global connectivity in the porous medium.

Key words: coral sand, quartz sand, microscopic angle, particle morphology, pore properties

CLC Number: 

  • TU 441
[1] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[2] QIN You, LONG Hui, WU Qi, ZHUANG Hai-yang, CHEN Guo-xing. Experimental study on threshold strain for pore pressure increase and stiffness degradation in saturated coral sand under complex stress paths [J]. Rock and Soil Mechanics, 2025, 46(11): 3441-3450.
[3] LIU Lu, LI Shuai-xue, ZHANG Xin-lei, GAO Hong-mei, WANG Zhi-hua, XIAO Yang. Experimental investigation on dynamic shear modulus and damping ratio of biocemented coral sand [J]. Rock and Soil Mechanics, 2025, 46(11): 3410-3420.
[4] XIE He-lin, HU Zheng, YI Fei, . Suffusion modeling of poorly graded sand and gravel soil considering particle morphology and clogging effect [J]. Rock and Soil Mechanics, 2024, 45(S1): 677-684.
[5] WANG Xin-zhi, HUANG Peng, LEI Xue-wen, WEN Dong-sheng, DING Hao-zhen, LIU Kai-cheng, . Permeability test of zinc sulfate bonded coral sand and discussion on its engineering application [J]. Rock and Soil Mechanics, 2024, 45(7): 2094-2104.
[6] WANG Bu-xue-yan, MENG Qing-shan, QIAN Jian-gu, . Breaking rate of coral sand and gravel based on volume change [J]. Rock and Soil Mechanics, 2024, 45(7): 1967-1975.
[7] ZHANG Xiao-yan, LI Ji, CAI Yan-yan, ZHANG Jin-xun, . Deformation characteristics of coral sand foundation of aviation oil storage tank [J]. Rock and Soil Mechanics, 2024, 45(12): 3738-3747.
[8] HUANG Peng, LEI Xue-wen, WANG Xin-zhi, SHENG Jian-hua, DING Hao-zhen, WEN Dong-sheng, . Stability of seepage erosion in gap-graded coral sand foundation [J]. Rock and Soil Mechanics, 2024, 45(11): 3366-3377.
[9] QU Ru, ZHU Chang-qi, LIU Hai-feng, WANG Tian-min, MA Cheng-hao, WANG Xing, . A comparative study of methods for determining boundary dry density of coral sand [J]. Rock and Soil Mechanics, 2023, 44(S1): 461-475.
[10] MA Cheng-hao, ZHU Chang-qi, QU Ru, LIU Hai-feng, WANG Tian-min, HU Tao, . Multi-scale particle morphology analysis of coral sand in South China Sea [J]. Rock and Soil Mechanics, 2023, 44(S1): 117-126.
[11] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[12] ZHAO Jin-qiao, DING Xuan-ming, LIU Han-long, OU Qiang, JIANG Chun-yong, . Laboratory experiment study on response of vibroflotation compaction of coral sand [J]. Rock and Soil Mechanics, 2023, 44(8): 2327-2336.
[13] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[14] ZHANG Ji-ru, ZHENG Yan-jun, PENG Wei-ke, WANG Lei, CHEN Jing-xin. Applicability of power-law stress-strain model for coral sand under earth fill stress path [J]. Rock and Soil Mechanics, 2023, 44(5): 1309-1318.
[15] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!