Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (12): 3862-3872.doi: 10.16285/j.rsm.2020.0343

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Fracture mechanism of specimens with 3D printing cross joint based on DIC technology

JIN Ai-bing1, 2, WANG Shu-liang1, 2, WANG Ben-xin1, 2, SUN Hao1, 2, CHEN Shuai-jun1, 2, ZHU Dong-feng1, 2   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-03-25 Revised:2020-04-13 Online:2020-12-11 Published:2021-01-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(52004017,51674015), the China Postdoctoral Science Foundation (2020M670138) and the Fundamental Research Funds for the Central Universities(FRF-TP-19-026A1).

Abstract: In order to study the influence of the cross joints on the fracture mechanism of rock mass, a joint model that can simulate the cross structural plane of rock mass was prepared by the 3D printing technology. By pouring similar materials, the specimen with prefabricated cross joints was formed. Based on the digital image correlation technology (DIC), the crack initiation, propagation and failure mode of specimen under uniaxial compression were analyzed. The results show that the closed joint model made by 3D printing technology can effectively replace the open joint fissures formed by traditional cutting or slotting methods. The experimental results show that the cross joints can significantly reduce the rock strength. With the increase of the cross joint angle, the strength of specimen increases firstly and then decreases. It reaches the maximum value when the cross joint angle is between 45o and 60o. The peak strain presents an opposite variation rule with that of the rock strength. The process of crack growth can be divided into four stages: the microcrack closure stage, the microcrack development stage, the initiation of main joints and the rapid extension of secondary joints, which correspond to each stage of stress-strain curve. It is also found that the influence of secondary joints on the failure of rock with cross joints is mainly reflected in the post peak stage. Combined with the maximum distortion energy theory, it has little influence on the stress distribution at the tip of the main joints, which play an absolute role in controlling the rock failure. This has a certain guidance for rock engineering.

Key words: 3D printing, cross joint, uniaxial compression, digital image correlation (DIC), crack propagation

CLC Number: 

  • TU454
[1] SONG Yi-min, WANG Teng-teng, XU Hai-liang, AN Dong, JIANG Xiao-dong. Recognition of strain information for rock deformation localization and rupture precursors [J]. Rock and Soil Mechanics, 2025, 46(S1): 171-182.
[2] CAI Yu-juan, CAI Jing-sen, REN Shao-wen, LIU Kai, CHEN Jing, LI Yi, . Rapid estimation method for mechanical parameters of heterogeneous rock formations in karst areas [J]. Rock and Soil Mechanics, 2025, 46(9): 2749-2762.
[3] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[4] LI Man, XIN Hao-zhe, LIU Xian-shan, ZHANG Fan, HU Dai-wei, YANG Fu-jian, . Numerical study on mixed-mode fracture of rock mass based on modified phase field model [J]. Rock and Soil Mechanics, 2025, 46(8): 2600-2612.
[5] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[6] MA Peng-fei, ZHANG Yi-chen, YUAN Chao, XU Mao-zhou, GUO Xiao-xiong, . Simulations of interval damage phenomenon in weak rock mass using the improved peridynamic method [J]. Rock and Soil Mechanics, 2025, 46(7): 2296-2307.
[7] PENG Xiao, ZHOU Jian, ZHANG Lu-qing, YANG Zhi-fa, ZHOU Tang-fu, LIN Ya-miao, YANG Duo-xing, . Numerical study on thermal damage characteristics of quartzite under real-time high temperature and natural cooling [J]. Rock and Soil Mechanics, 2025, 46(6): 1943-1956.
[8] DU Hai-long, JIN Ai-bing, QIN Wen-jing, SHANG Rui-hao, WANG Chuang-jiang, MA Sai, . Mechanical properties and damage characteristics of cement grouted coal and rock under uniaxial compression [J]. Rock and Soil Mechanics, 2025, 46(5): 1521-1533.
[9] CAO Hu, ZHANG Guang-qing, LI Shi-yuan, WANG Wen-rui, XIE Peng-xu, SUN Wei, LI Shuai, . A hydraulic fracture extension model for fracturing and enhanced oil recovery considering the influence of the fracture process zone and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 798-810.
[10] ZHOU Jian, LIAO Xing-chuan, LIU Fu-shen, SHANG Xiao-nan, SHEN Jun-yi, . Application of convolution-based peridynamics in rapid simulation of random crack propagation [J]. Rock and Soil Mechanics, 2025, 46(2): 625-639.
[11] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[12] YANG Ke, YU Xiang, HE Xiang, HOU Yong-qiang, ZHANG Lian-fu, . Energy evolution and damage characteristics of gangue cemented backfill in different water content states [J]. Rock and Soil Mechanics, 2025, 46(1): 26-42.
[13] DU Jin-fei, DU Yu-xiang, JIA Yong-sheng, SUN Jin-shan, YAO Ying-kang, XIE Quan-min, FAN Kun-hui, . Analysis of deformation damage and energy dissipation of red sandstone under hydro-dynamic coupling effect [J]. Rock and Soil Mechanics, 2024, 45(S1): 248-258.
[14] ZHOU Chang-bing, YAN Jun-hao, LI Xiao-shuang, . Numerical simulation of dynamic evolution characteristics of thermal fracture in granite [J]. Rock and Soil Mechanics, 2024, 45(S1): 694-704.
[15] HAN Yong, LI Shu-chen, YUAN Chao, FENG Xian-da, WANG Xiu-wei, . Mechanical properties and crack propagation behavior of flawed red sandstone coated with a thin spray-on liner under uniaxial compression [J]. Rock and Soil Mechanics, 2024, 45(9): 2583-2594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!