Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2601-2608.doi: 10.16285/j.rsm.2019.1650

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Investigation of strength properties of coarse granular material at different densities using large-scale true triaxial tests

JIANG Jing-shan1, 2, ZUO Yong-zhen2, CHENG Zhan-lin2, PAN Jia-jun2   

  1. 1. School of Architectural Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China; 2. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, China
  • Received:2019-09-27 Revised:2020-01-07 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Key R&D Program of China(2017YFC0404804), the National Natural Science Foundation of China-Yalong River Joint Fund for Key Projects(U1765203), the General Program of National Natural Science Foundation of China (51679072, 51778282) , the Scientific Research Foundation of Nanjing Institute of Technology (CKJB201706) and the CRSRI Open Research Program (CKWV2017510/KY).

Abstract: Dry density has an important influence on strength properties of coarse granular material, especially in three-dimensional stress state. In this study, the effects of dry density on strength properties of coarse granular material were investigated using large-scale true triaxial tests under equal intermediate principal stress coefficient (b=0.25) loading condition with equal minimum principle stress and large-scale triaxial tests at different dry densities. The results show that the stress-strain curve of large-scale true triaxial test presents basically of climbing shape which is higher and steeper than that of large-scale triaxial test and shows strong hardening behavior. The strength of coarse granular material increases linearly with the increase of initial dry density or minimum principal stress. The strength of large-scale true triaxial test increases by 20%–97% compared with that of large-scale triaxial test, and the smaller the minimum principal stress, the greater the strength increase. If the cohesion of coarse granular material is 0, the internal friction angle increases linearly with the increase of initial dry density and decreases with the increase of minimum principal stress. The failure stress ratio linearly increases with the increase of initial dry density and decreases linearly with the increase of minimum principal stress. The failure stress ratio of large-scale true triaxial test is smaller than that of large-scale triaxial test.

Key words: large-scale true triaxial test, coarse granular material, dry density, intermediate principal stress, strength, internal friction angle, failure stress ratio

CLC Number: 

  • TU 411
[1] FU Qiang, YANG Ke, LIU Qin-jie, SONG Tao-tao, WU Ben-niu, YU Peng, . Interface strength characteristics of surrounding rock-lining composite structures under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(S1): 40-52.
[2] YANG Xuan-yu, WANG Yong, . Experimental study on shear behavior of regular soil-rock interface considering asperity widths [J]. Rock and Soil Mechanics, 2025, 46(S1): 195-204.
[3] WU Qian-chan, ZHANG Rong-jun, XU Zhi-hao, YANG Zhao, ZHENG Jun-jie, . Influence of flocculant on strength behavior and deformation characteristics of solidified slurry-like mud [J]. Rock and Soil Mechanics, 2025, 46(S1): 205-216.
[4] LIU Jing, WANG Hao, YANG Xin, SU Jin-chen, ZHANG You-liang, . Field test study on reinforcement of tropical soil slope using microbial induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2025, 46(S1): 343-353.
[5] HUANG De-xin, WEN Tao, CHEN Ning-sheng, . Methods for determining residual strength of rock considering energy evolution [J]. Rock and Soil Mechanics, 2025, 46(9): 2825-2836.
[6] FANG Wei, WU Run-feng, ZHOU Chun-mei, . Rankine passive earth pressure of unsaturated soil using envelope shell model [J]. Rock and Soil Mechanics, 2025, 46(9): 2885-2893.
[7] LI Xiao-feng, LI Hai-bo, LIU Li-wang, FU Shuai-yang, . Tensile failure characteristics and mesoscopic mechanism of rocks under impact loading [J]. Rock and Soil Mechanics, 2025, 46(8): 2387-2398.
[8] LAO Guo-feng, YANG Jun-sheng, XIE Yi-peng, TANG Chong, XU Zhi-peng, . A peak shear strength model of continuously graded granular soils based on skeleton structure indices [J]. Rock and Soil Mechanics, 2025, 46(8): 2459-2470.
[9] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[10] CAO Yi, RONG Chuan-xin, WANG Yan-sen, CHANG Lei, WANG Bin, . Mechanical response and constitutive modeling of frozen calcareous clay under complex multi-axial stress paths [J]. Rock and Soil Mechanics, 2025, 46(7): 2071-2084.
[11] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[12] HUANG Ying-hao, MAO Shuai-dong, ZHANG Juan, WANG Wen-chong, WANG Shuo, . Basic properties of lightweight convection-solidified silt backfill [J]. Rock and Soil Mechanics, 2025, 46(6): 1700-1708.
[13] LUO Zuo-sen, CAO Xu, DENG Hua-feng, YANG Wang, LI Jian-lin, YANG Chao, . Influence of dynamic normal load on shear mechanical properties of limestone joint surface under different water-bearing states [J]. Rock and Soil Mechanics, 2025, 46(6): 1799-1810.
[14] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[15] LI Lin, ZHANG Deng-hong, ZHANG Miao, GU Xiao-qiang, XU Long-fei, . Load transfer model of pile-unsaturated loess interface considering hydro-mechanical coupling effects [J]. Rock and Soil Mechanics, 2025, 46(5): 1343-1355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!