Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2829-2838.doi: 10.16285/j.rsm.2019.1703

• Numerical Analysis • Previous Articles     Next Articles

Impact of rotation resistance on fabric of granular materials

ZOU Yu-xiong1, 2, MA Gang1, 2, LI Yi-Ao1, 2, CHEN Yuan1, 2, ZHOU Wei1, 2, QIU Huan-feng3   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China; 3. Power China Guiyang Engineering Corporation Limited, Guiyang, Guizhou 550081, China
  • Received:2019-10-02 Revised:2020-01-08 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51825905, U1865204, 51779194), the Guizhou Science and Technology Project([2016]1154) and the Science and Technology Project of China Huaneng Group (HNKJ18-H26).

Abstract: Granular materials are mostly composed of irregularly shaped particles, such as sand, grain and so on. Resistance to the rotation is an inherent characteristic of irregularly shaped particles. Previous studies have shown that the anti-rotation characteristics of particles have a significant effect on their macro-mechanical responses. Therefore, the non-spherical particles or the spherical particles with a contact model considering rolling resistance are widely employed in the mesoscopic numerical simulations of granular materials. In this paper, the combined finite and discrete element method (FDEM) and discrete element method (DEM) are used to simulate the triaxial tests of ellipsoidal particles and spherical particles with rolling resistance, respectively. The limitations of the rolling resistance model capturing particle shape effects are pointed out, and the meso sources of shape influence are revealed from the perspective of particle configuration structure. Peak deviatoric stress and dilatancy both change monotonically with rolling friction coefficient and the degree of deviation from a spherical shape, but the influence of particle shape on them shows obvious convergence. The mesoscopic fabric analysis also shows that although both particle shape and rolling resistance can significantly enhance the fabric anisotropy, but there are significant differences in the fabric anisotropy evolution mode between the two particle systems. The difference of the above results lies in the different influence mechanism of rotation resistance. Rolling friction enhances the stable bearing capacity of particles by limiting the rotation of particles, while non-spherical particles form a stable local arrangement structure through interlocking. Since the middle of ellipsoid particles can transfer greater contact force than the end, the particles rotate during shearing, and the long axis of the particles tends to be orthogonal to the direction of the largest principal stress, presenting a staggered arrangement, which means that particles lock together.

Key words: rolling resistance, particle shape, mesoscopic fabric, anisotropy, configuration structure

CLC Number: 

  • TV 641
[1] CAO Su-nan, LI Chun-hong, CHEN Yuan-bing, FEI Kang, . Shear characteristics of biomimetic sand-structure interface under cyclic loading conditions [J]. Rock and Soil Mechanics, 2025, 46(3): 821-832.
[2] LYU Zhi-tao, ZHAO Zhi-yuan, CAI Yi, XIA Cai-chu, DUAN Jun-yi. Evolution of anisotropic mechanical properties and damage model of sandstone under unidirectional freeze-thaw action [J]. Rock and Soil Mechanics, 2025, 46(11): 3421-3430.
[3] DONG Jia-bin, LU Yi-fang, JIN Yi, DONG Wen-hao, HOU Peng, LIU Shun-xi, NIU Ran. Fractal characteristics of joint surface morphology of Pengshui shale and anisotropic characterization based on joint roughness coefficient [J]. Rock and Soil Mechanics, 2025, 46(11): 3549-3561.
[4] GENG Xiao-wei, CHEN Cheng, SUN Zhong-hua, LI Wei, WANG Yong, XU Meng-bing, YU Song, . A constitutive model of sand considering fabric anisotropy based on generalized potential theory [J]. Rock and Soil Mechanics, 2025, 46(10): 3175-3186.
[5] DENG Dong-ping, XU Run-dong, PENG Yi-hang, WEN Sha-sha. Limit equilibrium method based on mode of slip surface stress analysis for slope stability under the characteristics of spatial heterogeneity and anisotropy in soil strength [J]. Rock and Soil Mechanics, 2025, 46(1): 55-72.
[6] XIAO Jin-qing, WEN Song-cheng, GUO Yuan, . Experimental study on clay erodibility and its anisotropy using hole erosion test [J]. Rock and Soil Mechanics, 2025, 46(1): 187-198.
[7] HU Jin-fang, YANG Qi-gui, XIONG Kun, MA Gang, CHENG Jia-lin, ZHOU Wei, CHANG Xiao-lin , . Experimental study on crushing characteristics of soft rock damming particles [J]. Rock and Soil Mechanics, 2024, 45(S1): 359-370.
[8] ZHENG Si-wei, HU Ming-jian, HUO Yu-long, . Factors affecting permeability of calcareous sands and predictive models [J]. Rock and Soil Mechanics, 2024, 45(S1): 217-224.
[9] KONG Yang, RUAN Huai-ning, WANG Zhang-chun, . Experimental study on failure pattern and anisotropic characteristics of simulated columnar jointed basalt samples [J]. Rock and Soil Mechanics, 2024, 45(S1): 259-266.
[10] WANG Wei, LUO Xiao, CHEN Chao, LIU Shi-fan, DUAN Xue-lei, ZHU Qi-zhi, . Gas-undrained triaxial compression mechanical properties test of layered rock [J]. Rock and Soil Mechanics, 2024, 45(5): 1334-1342.
[11] ZHANG Wei-jie, ZHANG Wei, CHEN Yu, DU Ying, JI Jian, GAO Yu-feng, . Influence of anisotropy of fluctuation scale of cohesion random field on the run-out distance of flow-like landslides [J]. Rock and Soil Mechanics, 2024, 45(4): 1039-1050.
[12] THENDAR Yoshua, LIM Aswin. Investigation into RFD system for deep excavation considering diaphragm wall joints [J]. Rock and Soil Mechanics, 2024, 45(12): 3717-3727.
[13] JIN Lei, YE Yang, WANG Yu, LI Jing-jing, . Mechanism of the rolling resistance effect on triaxial shear behavior of granular medium [J]. Rock and Soil Mechanics, 2024, 45(12): 3779-3790.
[14] ZHOU Chuang, QIAN Jian-gu , YIN Zhen-yu, . Computational fluid dynamics-discrete element fluidsolid coupling analysis on suffusion in anisotropic sandy soils [J]. Rock and Soil Mechanics, 2024, 45(1): 302-312.
[15] ZHANG Ge, CAO Ling, WANG Cheng-tang, . Development and application of modified linear bond contact model of frozen soil considering anisotropy [J]. Rock and Soil Mechanics, 2023, 44(S1): 645-654.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!