Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 3077-3086.doi: 10.16285/j.rsm.2019.1902

• Geotechnical Engineering • Previous Articles     Next Articles

Settlement analysis of flexible pile composite foundation under embankment load

CHEN Sheng-yuan1, YE Hua-yang2, ZHANG Wei-feng1, WEI Wei1   

  1. 1. College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou, Guangdong 510642, China; 2. Hydroelectric College, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2019-11-06 Revised:2020-04-23 Online:2020-09-11 Published:2020-10-21
  • Supported by:
    This work was supported by the National Innovation Training Program for College Students of China (201710564365), the Key Water Conservancy Science and Technology Innovation Project of Guangdong Province (2015-16) and the Science and Technology Project of Guangdong Power Grid Co., Ltd. (032000KK52160015).

Abstract: This paper is aiming to find a simple method for the settlement calculation of flexible pile composite foundation under embankment load. Firstly, the side frictional distribution of pile is simplified into a piecewise linear model based on the existing research results. Then, according to the relationship between the length of pile and the critical length of pile, combined with the coordination conditions of stress and compression deformation at the interface of pile-soil-cushion, settlement calculation formulas of flexible pile composite foundation reinforcement area are deduced by using the unit element method, and the settlement of underlying layer of composite foundation is calculated by layer summation method. Finally, the proposed approach is used to predict the settlement of an engineering example, and it is found that the predictions are in accordance with measurements, demonstrating that the approach is available in reflecting the working behavior of the flexible pile composite foundation under embankment load better. Further analysis shows that within the critical length of pile, the bearing capacity of soil between piles in composite foundation is maximized by the interaction of piles and soil. In addition, due to the drag effect of the negative frictional resistance, the axial force of pile at the position of the neutral plane reaches the maximum. Therefore, the concept of critical pile length and neutral plane should be highly valued and applied in engineering design.

Key words: composite foundation, settlement analysis, flexible pile, embankment load, critical length of pile

CLC Number: 

  • TU473
[1] E Tian-long, CUI Qiang, SUN Zhi-liang, FENG Yang-zhou, LI Bing-zhen, MIAO Dong, YANG Jian, MIAO Tian, . Structure optimization and bearing mechanism of a novel composite foundation incorporating short column-batter piles [J]. Rock and Soil Mechanics, 2025, 46(9): 2955-2966.
[2] ZHANG Ling, PENG Bo-cheng, XU Ze-yu, ZHAO Ming-hua, . Stability of geosynthetic-encased stone column composite foundation under embankment based on bending failure of columns [J]. Rock and Soil Mechanics, 2025, 46(2): 413-421.
[3] YANG Yao-hui, XIN Gong-feng, CHEN Yu-min, LI Zhao-feng, . Shaking table test on drainage pile-net composite foundation treated liquefiable subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 178-186.
[4] XU Bao-long, LU Meng-meng, LIU Yuan-jie, ZHANG Xin-yan. Analytical model and solutions for consolidation of composite foundation with multiple types of drains [J]. Rock and Soil Mechanics, 2024, 45(S1): 73-83.
[5] ZHOU Zhi-xiong, ZHOU Feng-xi, CAO Xiao-lin, WANG Zhen, . Variational limit equilibrium method analysis of ultimate bearing capacity of composite foundation: vertical reinforcement [J]. Rock and Soil Mechanics, 2024, 45(12): 3748-3754.
[6] ZHANG Yu-guo, YANG Wen-bing, ZHAO Ya-chun, WANG Chuang, ZHAO Ya-min. Theoretical study on consolidation of composite foundation with composite piles considering spatiotemporal effect of stress under bidirectional seepage [J]. Rock and Soil Mechanics, 2024, 45(1): 184-196.
[7] HAN Bo-lin, LU Meng-meng. Theoretical study of consolidation of composite ground with permeable concrete piles considering pile penetration deformation [J]. Rock and Soil Mechanics, 2023, 44(8): 2360-2368.
[8] DAI Tian-yi, XIAO Shi-guo, . Settlement calculation method of rigid pile composite foundation considering interaction between supported embankment and improved zone [J]. Rock and Soil Mechanics, 2022, 43(S1): 479-489.
[9] LU Meng-meng, SHAN Jie, LI Hong-jun, LI Chuan-xun, . Theoretical investigation of the consolidation for composite ground with profiled sectional composite piles based on the equivalent ring model [J]. Rock and Soil Mechanics, 2022, 43(6): 1513-1522.
[10] YANG Tao, JI Ying-zhu, . Analytical solution for consolidation of composite foundation with long vertical drains and short impervious columns under time-dependent loading [J]. Rock and Soil Mechanics, 2022, 43(5): 1187-1196.
[11] WANG Jia-hui, RAO Xi-bao, JIANG Ji-wei, YAO Jin-song, XIONG Shi-hu, LU Yi-wei, LI Hao-min, . Model experimental study of the shear mechanism of vibroflotation stone column composite foundation [J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103.
[12] HUANG Fu-yun, CHEN Han-lun, DONG Rui, SHAN Yu-lin. Experimental study of single pile-soil interaction under horizontal low-cycle reciprocating displacement [J]. Rock and Soil Mechanics, 2020, 41(5): 1625-1634.
[13] LANG Rui-qing, YANG Ai-wu, YAN Shu-wang, . Analysis of consolidation properties of rigid pile composite foundation based on modified equal strain assumption [J]. Rock and Soil Mechanics, 2020, 41(3): 813-822.
[14] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[15] HAN Jian-wen, LIU Bao, WANG Fei, YANG Ming-yu, TAO Ming-an. Field comprehensive testing on diatomite subgrade of high speed railway [J]. Rock and Soil Mechanics, 2020, 41(12): 4063-4072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!