Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (12): 3397-3406.doi: 10.16285/j.rsm.2021.0569

• Geotechnical Engineering • Previous Articles     Next Articles

Reliability of spatially variable earth slopes based on the upper bound analysis

SUN Zhi-hao1, TAN Xiao-hui1, SUN Zhi-bin2, LIN Xin1, YAO Yu-chuan1   

  1. 1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; 2. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
  • Received:2021-04-15 Revised:2021-08-21 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41972278, 42030710) and the National Key R&D Program of China (2019YFC1509903).

Abstract: The spatial variability is an inherent uncertainty of soils. The random field theory is used to represent the spatial variability of soils, and the random field discretization is performed by the Karhunen-Loève (KL) expansion method. Using the slope upper bound analysis based on the discrete mechanism, the discretization results of the internal friction angle random field at each point in the space are considered when generating the velocity discontinuity surface. The upper bound analysis, shear strength reduction technique, bisection searching, and sequential quadratic programming method are combined to solve the safety factor of slopes. The first-order reliability method (FORM) and subset simulation (SS) are employed for slope reliability analysis. Given the characteristics of SS and the shear strength reduction technique, an optimization algorithm coupling the two is proposed to improve computational efficiency. By calculating and analyzing an earth slope, the similarities and differences between FORM and SS based on the KL expansion method in solving the slope reliability index and failure consequence are clarified. The influence of the variation coefficient of soil strength parameters on the slope reliability index and failure consequence is investigated, providing a theoretical basis for risk analysis and prevention of slopes.

Key words: soil slope, upper bound analysis, spatial variability, first-order reliability method(FORM), subset simulation(SS)

CLC Number: 

  • TU43
[1] YUAN Zhi-rong, JIANG Shui-hua, CHANG Zhi-lu, XIANG Hu, LIU Yu-wei, HUANG Jin-song, . Reliability analysis of slope stability considering non-uniform distribution of initial soil water content and pore water redistribution [J]. Rock and Soil Mechanics, 2025, 46(3): 1001-1012.
[2] DENG Zhi-ping, ZHONG Min, JIANG Shui-hua, PAN Min, HUANG Jin-song, . Efficient reliability analysis of three-dimensional slopes with nonstationary random field modeling of soil parameters [J]. Rock and Soil Mechanics, 2025, 46(10): 3243-3252.
[3] HU Hong-peng, JIANG Shui-hua, CHEN Dong, HUANG Jin-song, ZHOU Chuang-bing, . Probabilistic back analysis of slope parameters and reliability evaluation using improved Bayesian updating method [J]. Rock and Soil Mechanics, 2024, 45(3): 835-845.
[4] SUN Chuang, LAN Si-qi, TAO Qi, GUAN Xi-bin, HAN Xi-ping. Upper bound analysis of three-dimensional progressive collapse mechanism of deep tunnel roof with weak surrounding rock [J]. Rock and Soil Mechanics, 2023, 44(9): 2471-2484.
[5] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[6] MA Peng-jie, RUI Rui, CAO Xian-zhen, XIA Rong-ji, WANG Xi, DING Rui-heng, SUN Tian-jian, . Model tests of micropile-reinforced soil slope with long and gently inclined fissures [J]. Rock and Soil Mechanics, 2023, 44(6): 1695-1707.
[7] ZHU Bin, PEI Hua-fu, YANG Qing, LU Meng-meng, WANG Tao, . Probabilistic analysis of wave-induced seabed response based on stochastic finite element method [J]. Rock and Soil Mechanics, 2023, 44(5): 1545-1556.
[8] ZHOU Xiang, CAI Jing-sen, MA Wei-cheng, XIAO Hao-wen, . Influence of material composition characteristics on the deformation and failure of gravel soil slopes [J]. Rock and Soil Mechanics, 2023, 44(2): 531-540.
[9] JIANG Qi-hao, WANG Jin-tong, HOU Bo, ZHANG Dong-ming, ZHANG Jin-zhang, . Bearing capacity of shallow foundations considering geological uncertainty and soil spatial variability [J]. Rock and Soil Mechanics, 2023, 44(11): 3288-3298.
[10] YANG Zhi-yong, YIN Cheng-chuan, NIE Jia-yan, LI Xue-you, QI Xiao-hui, . Probability density function estimation of geotechnical parameters considering the three-dimensional spatial variability based on multi-source site investigation data [J]. Rock and Soil Mechanics, 2022, 43(6): 1571-1584.
[11] YUAN Shuai, FENG De-wang, ZHANG Sen-hao, XING Yun-peng, KE Zun-qi, . Stability analysis of shield tunnel face considering spatial variability of hydraulic parameters [J]. Rock and Soil Mechanics, 2022, 43(11): 3153-3162.
[12] LIU Hui, ZHENG Jun-jie, ZHANG Rong-jun. System failure probability analysis of cohesive slope considering the spatial variability of undrained shear strength [J]. Rock and Soil Mechanics, 2021, 42(6): 1529-1539.
[13] ZHANG Wen-gang, WANG Qi, LIU Han-long, CHEN Fu-yong, . Influence of rock mass spatial variability on probability of tunnel roof wedge failure [J]. Rock and Soil Mechanics, 2021, 42(5): 1462-1472.
[14] WU Ben, LIU Wei, SHI Pei-xin, FU Chun-qing, . Two-dimensional spiral failure model of the heading face of shield tunneling [J]. Rock and Soil Mechanics, 2021, 42(3): 767-774.
[15] ZHANG Wen-gang, WANG Qi, CHEN Fu-yong, CHEN Long-long, WANG Lu-qi, WANG Lin, ZHANG Yan-mei, WANG Yu-qi, ZHU Xing, . Reliability analysis of slope and random response of anti-sliding pile considering spatial variability of rock mass properties [J]. Rock and Soil Mechanics, 2021, 42(11): 3157-3168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!