Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (4): 899-908.doi: 10.16285/j.rsm.2020.1201

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone

ZHAO Kui1, 2, RAN Shan-hu1, 2, ZENG Peng1, 2, YANG Dao-xue1, 2, TENG Tian-ye3   

  1. 1. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China; 2. Jiangxi Provincial Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China; 3. Shenhua Nortel Shengli Energy Co., Ltd., Xilinhot, Inner Mongolia 026000, China
  • Received:2020-08-13 Revised:2020-09-09 Online:2021-04-12 Published:2021-04-25
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFC0804601), the National Natural Science Foundation of China (51664018) and the Outstanding Doctoral Dissertation Cultivation Program of Jiangxi University of Science and Technology (3105500025).

Abstract: In order to investigate the response law of moisture content to the characteristic stress and acoustic emission characteristics of red sandstone, the uniaxial compression tests of red sandstone under different moisture content conditions were conducted using RMT-150C rock mechanical pressure testing machine and PCI-Ⅱ AE win acoustic emission system. The physical and mechanical parameters and characteristic stress evolution mechanism of red sandstone under water erosion are analyzed, and the evolution law of acoustic emission (wide and narrow-band) time series mode under different moisture content conditions is also investigated. At the same time, the damage evolution model of red sandstone is constructed based on cumulative acoustic emission event number and statistical mechanics theory. The results show that: 1) The P-wave velocity decreases first and then increases with the increase of moisture content. When the water saturation reaches a critical value, the P-wave velocity will drop to the lowest value. 2) The acoustic emission signal received by the narrow-band receiving sensor is closely related to the friction between the particles in the red sandstone, and the acoustic emission signal received by the wide-band receiving sensor is intrinsically related to the evolution of the internal cracks in the red sandstone. 3) The moisture content has a significant effect on the acoustic emission event rate (wide-band) at the stage of unstable crack propagation, and has a minor effect on the ratio of characteristic stress to peak strength, but it has a relatively obvious effect on the strain percentage at each stage. With the increase of moisture content, the failure mode of red sandstone specimens gradually changes from brittle failure to ductile failure. 4) As the moisture content increases, a "backward" change trend can be observed for the active period of acoustic emission event rate (narrow-band), and the acoustic emission modes of dry, natural, and saturated rock samples correspond to mass shocks, pre-main-later shocks and swarm shocks type, respectively. (5) According to the damage model based on the cumulative number of acoustic emission events (wide and narrow-band), the damage process of red sandstone can be divided into four stages: initial damage stage, stable damage development stage, accelerated damage development stage and damage destruction stage.

Key words: moisture content, characteristic stress, response frequency band, acoustic emission mode, damage coefficient

CLC Number: 

  • TU 452
[1] JIANG Hai-bo, LU Yan, LI Lin, ZHANG Jun, . Strength characteristics and damage evolution law of expansive soil in water conveyance channel under dry-wet and freeze-thaw action [J]. Rock and Soil Mechanics, 2025, 46(5): 1356-1367.
[2] YANG Yan-shuang, YAN Lei, ZHANG Zhan-rong, LIU Yong-li, CUI Zhen, PENG Jian-cheng, KANG Zhao-peng, . Ground motion propagation characteristics based on three-phase porous medium model [J]. Rock and Soil Mechanics, 2025, 46(4): 1109-1121.
[3] XU Qing-zhao, SHI Wen-bao, CHANG Ju-cai, MIAO Zhuang, YAN Ao-yun, LI Chuan-ming, QI Chao. Mechanical response and macro and micro failure mechanism of water-bearing coal samples with different loading rates [J]. Rock and Soil Mechanics, 2025, 46(3): 881-893.
[4] GUO Xu-hui, ZHU Hong-hu, WU Bing, GAO Yu-xin, HU Le-le, CAO Ding-feng, . Fiber optic passive sensing of loess moisture content based on artificial neural network [J]. Rock and Soil Mechanics, 2025, 46(2): 653-664.
[5] YANG Jia-qiang, ZHU Yu-long, XI Bang-lu, ZHANG Zhen-hua, . Prediction of cumulative plastic deformation for fouled ballast under different moisture contents [J]. Rock and Soil Mechanics, 2024, 45(S1): 715-722.
[6] ZHU Jing, PEI Qiang-qiang, GUO Qing-lin, ZHANG Bo, . Distribution characteristics of water and salt transport in rammed earth sites based on size effect [J]. Rock and Soil Mechanics, 2024, 45(5): 1481-1494.
[7] ZHU Chuan-qi, WANG Lei, ZHANG Yu, SHANG Rui-hao, WANG An-cheng. Effect of moisture content on wave velocity and failure characteristics of soft coal [J]. Rock and Soil Mechanics, 2024, 45(11): 3271-3285.
[8] QU Ru, ZHU Chang-qi, LIU Hai-feng, WANG Tian-min, MA Cheng-hao, WANG Xing, . A comparative study of methods for determining boundary dry density of coral sand [J]. Rock and Soil Mechanics, 2023, 44(S1): 461-475.
[9] RAN Yu-ling, BAI Wei, KONG Ling-wei, LI Xue-mei, FAN Heng-hui, YANG Xiu-juan, . Test method and error evaluation for compaction degree of fine soils based on frequency domain reflectometry [J]. Rock and Soil Mechanics, 2023, 44(8): 2458-2470.
[10] ZHANG Yan-jie, HE Meng, SONG Meng, CAO Li, ZHAO Hai-tao, LI Mei. Study on mechanical properties of water-rich sandy pebble soil [J]. Rock and Soil Mechanics, 2023, 44(6): 1739-1747.
[11] LANG Rui-qing, PEI Lu-xi, SUN Li-qiang, ZHOU Long, LI Heng. Experimental study on the flowability of freshly mixed solidified muds with different liquid limits [J]. Rock and Soil Mechanics, 2023, 44(10): 2789-2797.
[12] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[13] OU Xiao-duo, GAN Yu, PAN Xin, JIANG Jie, QIN Ying-hong, . Experimental study on thermal conductivity of remodel expansive rock and its influence factors [J]. Rock and Soil Mechanics, 2022, 43(S1): 367-374.
[14] LIU Jie, CUI Yu-yu, LU Zheng, YAO Hai-lin, . Preliminary study on influencing factors and discrimination methods of dispersity of dispersive clay [J]. Rock and Soil Mechanics, 2022, 43(S1): 237-244.
[15] JIN Zong-chuan, WANG Xue-qing, WU Xiao-ming, PENG Yun, . Testing and analysis of soil thermal parameters and their influencing factors [J]. Rock and Soil Mechanics, 2022, 43(5): 1335-1340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!