Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1669-1680.doi: 10.16285/j.rsm.2020.1710

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Fracturing mechanism of rock-like specimens with different joint densities based on DIC technology

QI Fei-fei1, 2, ZHANG Ke1, 2, XIE Jian-bin2, 3   

  1. 1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 2. Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 3. Department of Civil Engineering, Yunnan University, Kunming, Yunnan 650500, China
  • Received:2020-11-17 Revised:2021-02-08 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(11902128, 41762021) and the Applied Basic Research Foundation of Yunnan Province (2019FI012).

Abstract: In order to study the influence of joint density on the strength characteristics and failure modes of rock mass, the rock-like specimens with different joint densities were prepared by using 3D sand printing, with the quartz sand and furan resin being employed as the printing materials. The uniaxial compression test was performed on the 3D sand printed specimens, and the digital image correlation (DIC) method was used as a non-contact technique to monitor the full-field deformation. The crack initiation, propagation and coalescence behaviors were quantitatively analyzed from the micromechanics point of view. The results show that the shape of stress-strain curve and the compressive-to-tensile strength ratio of 3D sand printed intact specimen are similar with those of the natural rock, which can be grouped as a rock-like material. The variation processes of stress-strain curves with different joint densities are similar, and can be divided into initial compaction, linear elastic deformation, crack development and residual strength stages. The mechanical properties of specimens decrease with the increase of joint density ?f, and the relationship can be expressed as exponential decay functions. By calculating the strain field and displacement vector distribution on the specimen surface, the deformation field distribution and crack propagation of the specimen are found to be closely related to the joint density. The failure mode shifts from axial tension failure (?f = 0.280%) toward mixed failure (?f = 1.193%) and then to tensile coalescence band failure (?f ≥ 1.712%) as the flaw density increases. When the joint density is greater than or equal to 2.739%, the block rotation appears in the tensile coalescence band, and the bookshelf faulting with block rotation is reproduced.

Key words: rock mechanics, joint density, 3D printing, failure mode, digital image correlation (DIC) method, displacement field

CLC Number: 

  • TU 452
[1] ZHANG Zhi-guo, LI Nai-yi, NIU Rui, WANG An-yuan, ZHU Zheng-guo, . Stress and displacement solution using complex variable functions for double-arch tunnel considering construction effects of middle guideway [J]. Rock and Soil Mechanics, 2025, 46(S1): 141-158.
[2] TAO Zhi-gang, LI Meng-nan, YU Hai-jun, FAN Fang-zheng, WANG Jiong, . Experimental study on the anchoring characteristics of 2G-NPR anchor rods under different anchoring apertures [J]. Rock and Soil Mechanics, 2025, 46(S1): 67-80.
[3] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[4] LI Xiao-feng, LI Hai-bo, LIU Li-wang, FU Shuai-yang, . Tensile failure characteristics and mesoscopic mechanism of rocks under impact loading [J]. Rock and Soil Mechanics, 2025, 46(8): 2387-2398.
[5] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[6] LIU Jian, XIA Yong, JIANG Quan, CHEN Tao, HE Wei-guo, FAN Guo-gang, XIONG Xian-tao, ZHENG Hong, . Surrounding rock deformation and failure characteristics of Yingliangbao hydropower station in highly tectonic region and response analysis to Luding earthquake in underground caverns [J]. Rock and Soil Mechanics, 2025, 46(7): 2265-2280.
[7] CHU Chao-qun, BAO Xing-jia, MAO Ming-fa, WU Shun-chuan, CUI He-jia, . Experimental study of acoustic emission characteristics and failure forms of deep-buried limestone under triaxial compression [J]. Rock and Soil Mechanics, 2025, 46(7): 2049-2061.
[8] LYU Meng, WANG Liang-qing, XIE Ni, ZHU Lin-feng, AN Cai-long, KE Rui, WANG Xu-chen, . Shear characteristics and acoustic emission response characteristics of anchored heterogeneous structural plane [J]. Rock and Soil Mechanics, 2025, 46(7): 2106-2120.
[9] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[10] ZHANG Yan-bo, ZHOU Hao, LIANG Peng, YAO Xu-long, TAO Zhi-gang, LAI You-bang, . Acoustic emission location method of rock based on time precise picking and intelligent optimization algorithm [J]. Rock and Soil Mechanics, 2025, 46(5): 1643-1656.
[11] WANG Xin, XING An-kang, ZENG Zi-qiang, JIANG Yi, XU Jian-yu, WANG Xiao-nan, LIU Zao-bao, . Experiment of shear mechanical properties of layered iron ore [J]. Rock and Soil Mechanics, 2025, 46(4): 1039-1048.
[12] MA Yu-hang, HE Ming-ming, LI Ning, . Development of the XCY-2 rotary cutting and penetrating system and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 1025-1038.
[13] WANG Ying, LIU Jia-yi, GAO Meng, KONG Xiang-xiao, . Experiment on dynamic characteristics of deep-sea gas-bearing energy soil under seismic loading [J]. Rock and Soil Mechanics, 2025, 46(2): 457-466.
[14] LI Li-ping, YU Hong-hao, LI Qiu-yu, PAN Yi-shan, . Experiment on ultra-low friction effect of water-bearing coal block [J]. Rock and Soil Mechanics, 2025, 46(10): 3093-3103.
[15] DENG Dong-ping, XU Run-dong, PENG Yi-hang, WEN Sha-sha. Limit equilibrium method based on mode of slip surface stress analysis for slope stability under the characteristics of spatial heterogeneity and anisotropy in soil strength [J]. Rock and Soil Mechanics, 2025, 46(1): 55-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!