Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (6): 1681-1692.doi: 10.16285/j.rsm.2020.1501

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression

WU Dong-yang, YU Li-yuan, SU Hai-jian, WU Jiang-yu, LIU Ri-cheng, ZHOU Jian   

  1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
  • Received:2020-10-08 Revised:2021-03-02 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51704279, 51979272, 51579239).

Abstract: In order to investigate the anchoring effects of the bolts on the jointed rock mass and its influences on crack propagation, the unanchored and anchored rock-like specimens with joint angles of 15o, 30o, 45o, 60o, 75o and 90o were made. The MTS816 was used for uniaxial compression test, and the acoustic emission (AE) and digital image correlation technology (DIC) were used to monitor the crack growth. In addition, the particle flow code software PFC3D was used to study effects of different anchoring angles on crack propagation. The results show that the peak strength, peak strain and cracking stress of the anchorage unit are improved compared with the unanchored specimens. The existence of bolt reduces the stress intensity factor during the crack initiation and propagation of the tensile wings, which can limit the initiation and propagation of tensile cracks effectively. Moreover, the occurrence of shear cracks can be inhibited. The process of the tensile crack propagation can be divided into initial stage and acceleration stage. The displacement of the characteristic points of the specimens with bolts is smaller than specimens without bolts. According to the PFC3D simulation results, the anchoring effect is the most obvious when the anchoring angle ? is 45o. With the increase of the anchoring angle ?, the development degree of the tensile wing crack first increases and then decreases. The failure mode of the prefabricated fracture specimen changes from shear failure to tensile-shear compound failure, and then to shear failure. The results can provide a reference value for analyzing the stability of rock engineering.

Key words: rock mechanics, rock-like specimens, anchoring effect, crack propagation, PFC3D

CLC Number: 

  • TU 45
[1] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[2] LI Xiao-feng, LI Hai-bo, LIU Li-wang, FU Shuai-yang, . Tensile failure characteristics and mesoscopic mechanism of rocks under impact loading [J]. Rock and Soil Mechanics, 2025, 46(8): 2387-2398.
[3] LI Man, XIN Hao-zhe, LIU Xian-shan, ZHANG Fan, HU Dai-wei, YANG Fu-jian, . Numerical study on mixed-mode fracture of rock mass based on modified phase field model [J]. Rock and Soil Mechanics, 2025, 46(8): 2600-2612.
[4] LYU Meng, WANG Liang-qing, XIE Ni, ZHU Lin-feng, AN Cai-long, KE Rui, WANG Xu-chen, . Shear characteristics and acoustic emission response characteristics of anchored heterogeneous structural plane [J]. Rock and Soil Mechanics, 2025, 46(7): 2106-2120.
[5] MA Peng-fei, ZHANG Yi-chen, YUAN Chao, XU Mao-zhou, GUO Xiao-xiong, . Simulations of interval damage phenomenon in weak rock mass using the improved peridynamic method [J]. Rock and Soil Mechanics, 2025, 46(7): 2296-2307.
[6] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[7] DU Hai-long, JIN Ai-bing, QIN Wen-jing, SHANG Rui-hao, WANG Chuang-jiang, MA Sai, . Mechanical properties and damage characteristics of cement grouted coal and rock under uniaxial compression [J]. Rock and Soil Mechanics, 2025, 46(5): 1521-1533.
[8] ZHANG Yan-bo, ZHOU Hao, LIANG Peng, YAO Xu-long, TAO Zhi-gang, LAI You-bang, . Acoustic emission location method of rock based on time precise picking and intelligent optimization algorithm [J]. Rock and Soil Mechanics, 2025, 46(5): 1643-1656.
[9] MA Yu-hang, HE Ming-ming, LI Ning, . Development of the XCY-2 rotary cutting and penetrating system and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 1025-1038.
[10] ZHOU Jian, LIAO Xing-chuan, LIU Fu-shen, SHANG Xiao-nan, SHEN Jun-yi, . Application of convolution-based peridynamics in rapid simulation of random crack propagation [J]. Rock and Soil Mechanics, 2025, 46(2): 625-639.
[11] LI Li-ping, YU Hong-hao, LI Qiu-yu, PAN Yi-shan, . Experiment on ultra-low friction effect of water-bearing coal block [J]. Rock and Soil Mechanics, 2025, 46(10): 3093-3103.
[12] WANG Shuai, WANG Yu-hui, WANG Ling, LI Jia-qi, ZHAO Zi-hao, PANG Kai-xuan, . Influence mechanism of rock pore structure and mineral composition on crack propagation based on grain based model [J]. Rock and Soil Mechanics, 2025, 46(10): 3289-3301.
[13] FAN Hao, WANG Lei, LUO Yong, ZHU Chuan-qi, . Experimental study on triaxial creep characteristics of unloading-damaged sandstone under step loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 277-288.
[14] ZHOU Chang-bing, YAN Jun-hao, LI Xiao-shuang, . Numerical simulation of dynamic evolution characteristics of thermal fracture in granite [J]. Rock and Soil Mechanics, 2024, 45(S1): 694-704.
[15] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Experimental study of direct shear failure characteristics of sandstone joints based on characteristic parameters of acoustic emission [J]. Rock and Soil Mechanics, 2024, 45(S1): 167-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!