Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (7): 1951-1960.doi: 10.16285/j.rsm.2020.1728

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of cyclic loading directions on liquefaction characteristics of saturated coral sand

LIU Kang1, CHEN Guo-xing1, 2, WU Qi1, 2, MA Wei-jia1, QIN You1   

  1. 1. Institute of Geotechnical Engineering, Nanjing Tech. University, Nanjing, Jiangsu 210009, China; 2. Civil Engineering and Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing, Jiangsu 210009, China
  • Received:2020-11-20 Revised:2021-04-20 Online:2021-07-12 Published:2021-07-19
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFC1500403) and the National Natural Science Foundation of China (51678299, 52008206).

Abstract: The large scale construction of both military and civil infrastructures located in Nansha reefs and offshore marine areas, South China Sea, has raised the seismic safety a challenging issue for the projects in the region. The influences of fines content (FC) on the liquefaction characteristics of saturated terrestrial quartz sands have been extensively studied, but the corresponding research on saturated coral sands in reclaimed coral islands is less involved. Using the GDS hollow cylinder torsion shear apparatus, a series of isotropically consolidated undrained cyclic tests has been performed on saturated coral sand sampled from the Nansha Islands, South China Sea. The samples are prescribed with the stress path formed under the 90° jump rotation of principal stress with various cyclic loading directions. The influences of the inclination angle (?d) of the major principal stress and fines content FC on the liquefaction characteristics of saturated coral sand are investigated. It has been discovered that, regarding the zero effective stress state as initial liquefaction criterion, the liquefaction resistance of saturated coral sand decreases with the increase of ?d for 0°≤?d≤45° and FC for 0%≤FC≤30%. The correlation among the generalized shear strain amplitude (?ga), the fines content FC, and the revolution of residual excess pore water pressure of saturated coral soil has been clearified. By introducing a unit cyclic stress ratio USR as a new index for liquefaction resistance and based on binary medium theory, the expression between the unit cyclic stress ratio USR15, inducing initial liquefaction in 15 cycles, and the equivalent skeleton void ratio for the saturated sands is established for the test. The theory is validated by the experimental data in the literature.

Key words: saturated coral sand, cyclic loading direction, fines content, excess pore water pressure, liquefaction resistance

CLC Number: 

  • TU 441
[1] DONG Jian-hua, YANG Bo, TIAN Wen-tong, WU Xiao-lei, HE Peng-fei, ZHAO Lü-hua, LIAN Bo, . Research and development of novel anti-slide pile to prevent liquefaction and shaking table model test of seismic response [J]. Rock and Soil Mechanics, 2025, 46(4): 1084-1094.
[2] ZHANG Tao-yi, WANG Jia-quan, LIN Zhi-nan, TANG Yi, . Influences of fines content on strength deterioration and static shear characteristics of gravelly soil subgrade [J]. Rock and Soil Mechanics, 2025, 46(4): 1141-1152.
[3] QIN You, LONG Hui, WU Qi, ZHUANG Hai-yang, CHEN Guo-xing. Experimental study on threshold strain for pore pressure increase and stiffness degradation in saturated coral sand under complex stress paths [J]. Rock and Soil Mechanics, 2025, 46(11): 3441-3450.
[4] WANG Biao, CHEN Xing-xin, YIN Qing-feng, GUO Li-qun, HE Ming-gao, . Pore water pressure disturbance pattern of shield docking method in soft clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 535-549.
[5] YANG Yao-hui, XIN Gong-feng, CHEN Yu-min, LI Zhao-feng, . Shaking table test on drainage pile-net composite foundation treated liquefiable subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 178-186.
[6] JIN Dan-dan, LU Xian-dong, WANG Bing-hui, SHI Zhan, ZHANG Lei, . Analysis of pore pressure variation pattern of saturated sandy soil containing interlayer under impact loading [J]. Rock and Soil Mechanics, 2024, 45(4): 1081-1091.
[7] ZHANG Pei-yun, MU Lin-long, HUANG Mao-song, . Influence of soil relative density on suffusion of gap-graded soil based on coupled computational fluid dynamics-discrete element method [J]. Rock and Soil Mechanics, 2024, 45(1): 267-283.
[8] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[9] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[10] DENG Yue-bao, ZHANG Chen-hao, WANG Xin, ZHANG Ri-hong. Consolidation theory of implantable drainage pile [J]. Rock and Soil Mechanics, 2023, 44(9): 2639-2647.
[11] ZHANG Yan-jie, HE Meng, SONG Meng, CAO Li, ZHAO Hai-tao, LI Mei. Study on mechanical properties of water-rich sandy pebble soil [J]. Rock and Soil Mechanics, 2023, 44(6): 1739-1747.
[12] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[13] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[14] GUO Jing-zhuo, ZHENG Gang, ZHAO Lin-song, PAN Jun, ZHANG Zong-jun, ZHOU Qiang, CHENG Xue-song, . Experimental study of soil deformation and pore pressure caused by multi-row grouting [J]. Rock and Soil Mechanics, 2023, 44(3): 896-907.
[15] CHEN Ping-shan, LÜ Wei-qing, LIANG Xiao-cong, ZHOU Hong-xing, WANG Jing, MA Jia-jun, . Experimental study on liquefaction resistance characteristics of fine-grained coralline soils [J]. Rock and Soil Mechanics, 2023, 44(2): 337-344.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!