Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (7): 2015-2022.doi: 10.16285/j.rsm.2021.0087

• Geotechnical Engineering • Previous Articles     Next Articles

Study on corresponding relationship between explicit and implicit solutions in slope stability analysis based on reliability

GUO Hai-qiang, LI An-hong, XU Jun, LI Lian   

  1. China Railway Eryuan Engineering Group Co. Ltd., Chengdu, Sichuan 610031, China
  • Received:2021-01-13 Revised:2021-03-24 Online:2021-07-12 Published:2021-07-19
  • Supported by:
    This work was supported by the Science and Technology Research Project of China Railway Eryuan Engineering Group Co. Ltd ((KYY2019143 (19-21), (KYY2018075 (18-20)).

Abstract: There are differences between explicit and implicit solution methods in design expression, definition of slip resistance etc., resulting in disputes between the two methods in terms of stability factor (safety factor) K and slip resistance of the proposed project. In view of the above problems, the specific differences between the obvious solution and the implicit solution are firstly illustrated through the comparison of examples. Secondly, the method of reliability is introduced to calculate the slope reliability index, the reason for the difference between the two methods is analyzed through the corresponding relation with the safety factor. The results show that under the same safety factor, the slip resistance of the proposed project obtained by the implicit solution is amplified, resulting in a great difference of the anti-sliding structure designed by the two methods. Under the same design parameters, the stability factor (safety factor) K of the explicit solution is not equivalent to the implicit solution, thus their corresponding reliability indexes are different. The stability factor (safety factor) between the two methods can’t be unified. The research can be used to guide the engineering design and related standards.

Key words: slope, stability, transfer coefficient method, explicit solution, implicit solution, reliability index

CLC Number: 

  • P 694
[1] FENG De-luan, YU Yang, LIANG Shi-hua. Research progress and review on strength and water stability of alkali-activated cementitious material solidified coastal soft clay [J]. Rock and Soil Mechanics, 2025, 46(S1): 13-39.
[2] DENG Qi-ning, CUI Yu-long, WANG Jiong-chao, ZHENG Jun, XU Chong, . ChatGPT-assisted programming approach for three-dimensional slope stability calculation [J]. Rock and Soil Mechanics, 2025, 46(S1): 322-334.
[3] DONG Yuan, HU Ying-guo, LIU Mei-shan, LI Geng-quan, MA Chen-yang. Cumulative damage evolution mechanism in homogeneous rock high slopes induced by excavation blasting [J]. Rock and Soil Mechanics, 2025, 46(9): 2929-2942.
[4] XIONG Fei, LIU Xin-rong, LIU Wen-wu, ZHONG Zu-liang, YANG Zhong-ping, WANG Nan-yun, WANG Hao, XUE Yi. Mechanism of mining-induced failure and instability of steep karst slope with deep and large fissures [J]. Rock and Soil Mechanics, 2025, 46(8): 2516-2531.
[5] XU Quan, HOU Jing, YANG Jian, YANG Xin-guang, NI Shao-hu, CHEN Xin. Fine stability analysis of rock slope based on synthetic rock mass technology [J]. Rock and Soil Mechanics, 2025, 46(7): 2062-2070.
[6] JIANG Yi-jian, LI Huan-huan, ZHU Da-yong, LING Dao-sheng. A linear programming model for slope considering thrust line position and limit equilibrium upper and lower bound solutions [J]. Rock and Soil Mechanics, 2025, 46(6): 1745-1754.
[7] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[8] LI Shao-jun, ZHANG Shi-shu, LI Yong-hong, LIU Xiu-yang, LI Zhi-guo, XU Ding-ping, CHENG Li-juan, JIANG Quan, TANG Da-ming, CHEN Gang, . Failure mechanism and stability control of hard rock in extremely high stress large underground powerhouse of Shuangjiangkou hydropower station [J]. Rock and Soil Mechanics, 2025, 46(5): 1581-1594.
[9] GAO Ping-hong, GAO Chen-bo, PENG Cheng-wei, LIU Fei-yu, . Model test and discrete element analysis of granite residual soil slopes under rainfall conditions [J]. Rock and Soil Mechanics, 2025, 46(5): 1632-1642.
[10] LIU Xiang-ning, ZHANG Wen-jie, . Leaching characteristics of solidified Cr-contaminated soil under acidic wet-dry cycles [J]. Rock and Soil Mechanics, 2025, 46(4): 1196-1204.
[11] CAO Hu, ZHANG Guang-qing, LI Shi-yuan, WANG Wen-rui, XIE Peng-xu, SUN Wei, LI Shuai, . A hydraulic fracture extension model for fracturing and enhanced oil recovery considering the influence of the fracture process zone and its application [J]. Rock and Soil Mechanics, 2025, 46(3): 798-810.
[12] SONG Xiang-hua, XIAO Heng-lin, NI Hua-yong, TAN Yong, . Macro and micro study on the failure triggering mechanism of sandy soil slopes due to rainfall [J]. Rock and Soil Mechanics, 2025, 46(3): 969-979.
[13] SUN Wen-chao, WANG Jun-hao, XU Wen-jie, DONG Xiao-yang, REN He, WANG Hong-bing, ZHANG Xue-jie, WANG Heng-wei, . Stability and disaster dynamics analysis of highway debris dump site based on material point method [J]. Rock and Soil Mechanics, 2025, 46(3): 991-1000.
[14] YUAN Zhi-rong, JIANG Shui-hua, CHANG Zhi-lu, XIANG Hu, LIU Yu-wei, HUANG Jin-song, . Reliability analysis of slope stability considering non-uniform distribution of initial soil water content and pore water redistribution [J]. Rock and Soil Mechanics, 2025, 46(3): 1001-1012.
[15] ZHANG Ling, PENG Bo-cheng, XU Ze-yu, ZHAO Ming-hua, . Stability of geosynthetic-encased stone column composite foundation under embankment based on bending failure of columns [J]. Rock and Soil Mechanics, 2025, 46(2): 413-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!