Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (9): 2499-2506.doi: 10.16285/j.rsm.2020.1916

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Modeling unimodal/bimodal soil-water retention curves considering the influence of void ratio under capillarity and adsorption

LIN Zhi-qiang1, 2, QIAN Jian-gu1, 2, SHI Zhen-hao1, 2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 20092, China
  • Received:2020-12-23 Revised:2021-05-11 Online:2021-09-10 Published:2021-08-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41877252).

Abstract: The constitutive relationship between suction and degree of saturation is of great significance for estimating the shear strength and deformation behavior of unsaturated soils. A unimodal/bimodal soil-water retention curves (SWRC) is proposed considering the effects of various pore structures and the effects of void ratio on capillarity and adsorption. The different mechanisms of water retention through capillarity and adsorption are explicitly distinguished in the proposed model. The relationship between the capillary degree of saturation and suction is described as a specific function related to the characteristics of pore-size distribution, while the adsorptive degree of saturation is modeled considering the effect of capillary condensation explicitly. Subsequently, the decoupling formula of capillary and adsorptive saturation is further put forward. The formula lays a foundation for the model to account for the dependence of capillary part of SWRC on void ratio, which is consistent with the results from micro-scale tests. Eventually, an approach to estimate the shear strength of unsaturated soils with different initial void ratios has been proposed based on the improved SWRC model. The model is verified using data from water retention and direct shear tests reported for various types of soils in the literature.

Key words: soil-water retention curve, unimodality/bimodality, capillarity, adsorption, void ratio, strength

CLC Number: 

  • TU411
[1] YANG Xuan-yu, WANG Yong, . Experimental study on shear behavior of regular soil-rock interface considering asperity widths [J]. Rock and Soil Mechanics, 2025, 46(S1): 195-204.
[2] WU Qian-chan, ZHANG Rong-jun, XU Zhi-hao, YANG Zhao, ZHENG Jun-jie, . Influence of flocculant on strength behavior and deformation characteristics of solidified slurry-like mud [J]. Rock and Soil Mechanics, 2025, 46(S1): 205-216.
[3] LIU Jing, WANG Hao, YANG Xin, SU Jin-chen, ZHANG You-liang, . Field test study on reinforcement of tropical soil slope using microbial induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2025, 46(S1): 343-353.
[4] FU Qiang, YANG Ke, LIU Qin-jie, SONG Tao-tao, WU Ben-niu, YU Peng, . Interface strength characteristics of surrounding rock-lining composite structures under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(S1): 40-52.
[5] HUANG De-xin, WEN Tao, CHEN Ning-sheng, . Methods for determining residual strength of rock considering energy evolution [J]. Rock and Soil Mechanics, 2025, 46(9): 2825-2836.
[6] FANG Wei, WU Run-feng, ZHOU Chun-mei, . Rankine passive earth pressure of unsaturated soil using envelope shell model [J]. Rock and Soil Mechanics, 2025, 46(9): 2885-2893.
[7] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[8] LI Xiao-feng, LI Hai-bo, LIU Li-wang, FU Shuai-yang, . Tensile failure characteristics and mesoscopic mechanism of rocks under impact loading [J]. Rock and Soil Mechanics, 2025, 46(8): 2387-2398.
[9] LAO Guo-feng, YANG Jun-sheng, XIE Yi-peng, TANG Chong, XU Zhi-peng, . A peak shear strength model of continuously graded granular soils based on skeleton structure indices [J]. Rock and Soil Mechanics, 2025, 46(8): 2459-2470.
[10] CAO Yi, RONG Chuan-xin, WANG Yan-sen, CHANG Lei, WANG Bin, . Mechanical response and constitutive modeling of frozen calcareous clay under complex multi-axial stress paths [J]. Rock and Soil Mechanics, 2025, 46(7): 2071-2084.
[11] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[12] HUANG Ying-hao, MAO Shuai-dong, ZHANG Juan, WANG Wen-chong, WANG Shuo, . Basic properties of lightweight convection-solidified silt backfill [J]. Rock and Soil Mechanics, 2025, 46(6): 1700-1708.
[13] LUO Zuo-sen, CAO Xu, DENG Hua-feng, YANG Wang, LI Jian-lin, YANG Chao, . Influence of dynamic normal load on shear mechanical properties of limestone joint surface under different water-bearing states [J]. Rock and Soil Mechanics, 2025, 46(6): 1799-1810.
[14] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[15] LI Lin, ZHANG Deng-hong, ZHANG Miao, GU Xiao-qiang, XU Long-fei, . Load transfer model of pile-unsaturated loess interface considering hydro-mechanical coupling effects [J]. Rock and Soil Mechanics, 2025, 46(5): 1343-1355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!