Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (9): 2518-2524.doi: 10.16285/j.rsm.2020.1859

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of relationship between sand liquefaction and CFG pile construction parameters

YIN Xiao-ka, DU Si-yi, WANG Tao-tao   

  1. School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • Received:2020-12-12 Revised:2021-05-27 Online:2021-09-10 Published:2021-08-30

Abstract: The liquefaction of saturated fine sand is a crucial difficulty hindering the development of long auger cement fly-ash gravel (CFG) pile construction technology. However, the relationships between liquefaction and two construction-related parameters of CFG piles, namely the pile spacing and the pipe rotation speed, during the piling process have not been well investigated. Thus, in this paper, the influences of these two parameters on the liquefaction of saturated fine sand are analyzed, and the relationships between the two parameters and liquefaction are established. Besides the theoretical studies, an experiment platform is also established to reproduce the construction process of a long auger CFG pile in the saturated fine sand. The results of laboratory tests show that the increase of pipe rotation speed and the decrease of pile spacing promote the liquefaction of saturated fine sand, shorten the pile length, and increase the pile diameter. In order to relieve the liquefaction of saturated sand, the pipe rotation speed should be reduced and the pile spacing should be increased.

Key words: long auger CFG pile, pile spacing, pipe rotation speed, saturated fine sand, excess pore water pressure

CLC Number: 

  • TU470
[1] WANG Hong-tao, LIU Rong-li, ZHAO Xiao-dong, ZHAO Yao-hui, ZHAO Wan-li, . Mechanical effect analysis of soil arch between piles under composite support of steel pipe piles and cast-in-place piles [J]. Rock and Soil Mechanics, 2025, 46(4): 1228-1239.
[2] DONG Jian-hua, YANG Bo, TIAN Wen-tong, WU Xiao-lei, HE Peng-fei, ZHAO Lü-hua, LIAN Bo, . Research and development of novel anti-slide pile to prevent liquefaction and shaking table model test of seismic response [J]. Rock and Soil Mechanics, 2025, 46(4): 1084-1094.
[3] QIN You, LONG Hui, WU Qi, ZHUANG Hai-yang, CHEN Guo-xing. Experimental study on threshold strain for pore pressure increase and stiffness degradation in saturated coral sand under complex stress paths [J]. Rock and Soil Mechanics, 2025, 46(11): 3441-3450.
[4] YANG Yao-hui, XIN Gong-feng, CHEN Yu-min, LI Zhao-feng, . Shaking table test on drainage pile-net composite foundation treated liquefiable subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 178-186.
[5] WANG Biao, CHEN Xing-xin, YIN Qing-feng, GUO Li-qun, HE Ming-gao, . Pore water pressure disturbance pattern of shield docking method in soft clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 535-549.
[6] JIN Dan-dan, LU Xian-dong, WANG Bing-hui, SHI Zhan, ZHANG Lei, . Analysis of pore pressure variation pattern of saturated sandy soil containing interlayer under impact loading [J]. Rock and Soil Mechanics, 2024, 45(4): 1081-1091.
[7] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[8] DENG Yue-bao, ZHANG Chen-hao, WANG Xin, ZHANG Ri-hong. Consolidation theory of implantable drainage pile [J]. Rock and Soil Mechanics, 2023, 44(9): 2639-2647.
[9] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[10] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[11] GUO Jing-zhuo, ZHENG Gang, ZHAO Lin-song, PAN Jun, ZHANG Zong-jun, ZHOU Qiang, CHENG Xue-song, . Experimental study of soil deformation and pore pressure caused by multi-row grouting [J]. Rock and Soil Mechanics, 2023, 44(3): 896-907.
[12] CHEN Ping-shan, LÜ Wei-qing, LIANG Xiao-cong, ZHOU Hong-xing, WANG Jing, MA Jia-jun, . Experimental study on liquefaction resistance characteristics of fine-grained coralline soils [J]. Rock and Soil Mechanics, 2023, 44(2): 337-344.
[13] DING Yu, JIA Yu, WANG Xuan, ZHANG Jia-sheng, CHEN Xiao-bin, LUO Hao, ZHANG Yu, . Influence of particle size distribution and initial dry density on the characteristics of subgrade mud pumping [J]. Rock and Soil Mechanics, 2022, 43(9): 2539-2549.
[14] SU Xin-bin, LIAO Chen-cong, LIU Shi-ao, ZHANG Lu-lu, . Triaxial test for strength characteristics of saturated clay-structure interface based on prefabricated sliding surface [J]. Rock and Soil Mechanics, 2022, 43(10): 2852-2860.
[15] WANG Jing, XIAO Tao, ZHU Hong-hu, MEI Guo-xiong, LIU Zheng-yuan, WEI Guang-qing, . Study on bearing capacity of permeable pipe pile by field optical fiber monitoring [J]. Rock and Soil Mechanics, 2021, 42(7): 1961-1970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!