Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2717-2725.doi: 10.16285/j.rsm.2021.2077

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Soil-water characteristic of biochar-clay mixture in the full suction range

LI Ming-yu1, SUN Wen-jing2, HUANG Qiang1, SUN De-an2   

  1. 1. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China; 2. Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
  • Received:2021-12-09 Revised:2022-06-23 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41977214).

Abstract: Soil-water characteristic curve (SWCC) plays an important role in defining the hydro-mechanical behavior of unsaturated soils. Biochar has the properties of porous structure, high specific surface area and high adsorption. The hydraulic characteristics of biochar-amended soil may change due to the influence of natural environmental factors when applied as the cover layer of landfills. In order to study the effect of biochar content on the water retention behavior of biochar-clay mixture in full suction range, the suction of samples was controlled by vapor equilibrium technique (suction range 3–368 MPa), filter paper method (suction range 0–40 MPa) and pressure plate method (suction range 0–1.5 MPa), and the water content and saturation degree of samples after suction equilibrium were determined. The soil-water characteristic curve of biochar-clay mixtures was obtained in the full suction range. The results showed that: (1) The soil-water characteristic curve in the full suction range of biochar-clay mixtures was effectively expressed by the three suction testing methods. (2) Biochar can affect the water retention behavior of clay, but within a certain range of suction, the water retention behavior of biochar-clay mixtures was also related to the pore structure and the morphology of water in the pores. (3) As measured by the pressure plate method, the air intake value of samples decreased as the biochar content increased. When the suction value was less than the air intake value, a horizontal section appeared in the curve, and the samples were always in the saturated state. The greater the content of biochar, the better the water retention of the sample. (4) The relationship between the water retention capacity of biochar-amended clay and biochar content was explained by the microscopic structure of the biochar-clay mixture and the distribution form of biochar in clay.

Key words: biochar, vapor equilibrium technique, pressure plate method, filter paper method, soil-water characteristic curve, microstructure

CLC Number: 

  • TU 411
[1] ZHI Bin, WEI Yuan-jun, WANG Pan, ZHANG Qian, LIU Cun-li, REN Hui-ming, . Correlation mechanism between macroscopic strength and microstructure of undisturbed loess containing Na2SO4 salt under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2025, 46(S1): 106-120.
[2] ZHANG Xing-wen, CAO Jing, LEI Shu-yu, LI Yu-hong, CHENG Yun, ZHANG Ning-rui. Effect of fulvic acid environment on the structure and permeability of cement-soil containing humic acid [J]. Rock and Soil Mechanics, 2025, 46(S1): 249-261.
[3] HE Yuan-yuan, PENG Qi-lan, WANG Li, WANG Shi-mei, NIE Lei, XU Yan, LYU Yan, CHEN Yong, ZHANG Xian-wei. Investigating pore characteristics and permeability of seasonally frozen turfy soil using multiple micro-test methods [J]. Rock and Soil Mechanics, 2025, 46(1): 110-122.
[4] ZHANG Gao-xiang, LIU Yan, LIU Zhi-qiang, . Dynamic effect test and model study of soil-water characteristic curve [J]. Rock and Soil Mechanics, 2025, 46(1): 178-186.
[5] WANG Li-yan, JIANG Fei, ZHUANG Hai-yang, WANG Bing-hui, ZHANG Lei, LI Ming, . Dynamic characteristics and microscopic analysis of rubber-steel slag filler considering the influence of hydration period [J]. Rock and Soil Mechanics, 2024, 45(S1): 53-62.
[6] CHENG Xin, JIANG Wen-hao, HUANG Xiao, LI Shuang, WANG Ying-fu, LI Jiang-shan, . Engineering properties and microstructural evolution of self-hardening vertical barrier materials under the influence of Cr(VI) contaminated solution [J]. Rock and Soil Mechanics, 2024, 45(S1): 225-238.
[7] ZHOU Feng-xi, ZHAO Wen-cang. Estimating unfrozen water content in unsaturated frozen soils based on soil water characteristic curve [J]. Rock and Soil Mechanics, 2024, 45(9): 2719-2727.
[8] YE Yun-xue, YI Bo-wen, LIU Xiao-wen, WU Jun-hua, HONG Ben-gen, . Influence of water change path and volume change in soil on soil-water characteristic curve measured by filter paper method under drying path [J]. Rock and Soil Mechanics, 2024, 45(8): 2351-2361.
[9] ZHANG Ke, GUAN Shi-hao, QI Fei-fei, XU Yi, JIN Ke-sheng, . Macromechanical properties and microstructure of sandstone under scouring effect [J]. Rock and Soil Mechanics, 2024, 45(7): 1929-1938.
[10] CHEN Kang, LIU Xian-feng, YUAN Sheng-yang, Ma Jie, CHEN Yi-han, JIANG Guan-lu, . Effect of water content on stiffness degradation and microstructure of red mudstone fill material [J]. Rock and Soil Mechanics, 2024, 45(7): 1976-1986.
[11] FAN Pei-pei, ZHANG Ling-kai, DING Xu-sheng, . Deterioration law of shear and compression characteristics of collapsible loess under dry-wet and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2024, 45(7): 2050-2060.
[12] PAN Wang-sheng, ZHAO Tian-yin, LI Xin, . Priority connectivity model of loess microstructure and its significance for preferential flow [J]. Rock and Soil Mechanics, 2024, 45(6): 1709-1719.
[13] RUI Rui, TIAN Zi-jin, YANG Hai-qing, HUANG Teng, MENG Qing-hui, WANG Jin-yuan, . Static characteristics test of marine soft soil under the influence of temperature effect [J]. Rock and Soil Mechanics, 2024, 45(4): 1112-1120.
[14] ZHANG Si-qi, PEI Hua-fu, TAN Dao-yuan, ZHU Hong-hu, . Experimental study on the variation pattern of pore size distributions for unsaturated clay with single or double pore structure [J]. Rock and Soil Mechanics, 2024, 45(2): 353-363.
[15] MIN Fan-lu, SHEN Zheng, LI Yan-cheng, YUAN Da-jun, CHEN Jian, LI Kai, . Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism [J]. Rock and Soil Mechanics, 2024, 45(2): 364-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!