Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (6): 1503-1512.doi: 10.16285/j.rsm.2021.1603

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of one-dimensional nonlinear consolidation of soft soil considering time-dependent loading with continuous drainage boundary

WU Si-si, LUO Wen-qiang, LI Yin-can, CUI Wei-jian, WANG Shuo   

  1. School of Mathematics and Physics, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2021-09-21 Revised:2022-03-16 Online:2022-06-21 Published:2022-06-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42090055, 41972289).

Abstract: Soil tends to have nonlinear compression characteristics, and the consolidation laws of soil are different under different compression characteristics. Considering the nonlinear characteristics of soil, variable load and continuous drainage boundary conditions, a one-dimensional consolidation equation is established. Its solutions are obtained by using the unconditionally stable finite difference method and semi-analytical method, and the reliability of the two methods is verified by the degradation of continuous drainage boundary condition and the comparison of the two solutions. Based on the solution of finite difference method, the influences of interface parameter, load parameters and nonlinear parameter on soil consolidation are analyzed in detail. The results show that, the larger the interface parameter of continuous drainage boundary, the greater the dissipation rate of excess pore water and the settlement rate of soil, while the interface parameter has no effect on the final settlement. The excess pore water pressure gradually increases at the loading stage and dissipates at the constant loading stage. With the increase of loading rate, both the peak value of excess pore water pressure and soil consolidation rate increase, indicating that extending the construction period is conducive to reducing the influence of excess pore water pressure. It is difficult to accurately predict the consolidation rate of soil in engineering. The accuracy of soil model, boundary conditions and soil calculation parameters should be ensured when the consolidation theory is used.

Key words: one-dimensional consolidation, nonlinear characteristic, continuous drainage boundary, time-dependent loading, interface parameter

CLC Number: 

  • TU433
[1] WANG Yi-yang, LI Chuan-xun, LI Kuo, LU Xiang-zong. Analytical solutions for large-strain nonlinear consolidation of soils with vertical drain [J]. Rock and Soil Mechanics, 2024, 45(5): 1446-1456.
[2] CHANG Liu-cheng, WANG Hong-yu, WANG Ya, CAO Jing. Influence of sand content on one-dimensional creep behavior of sand-fines mixtures [J]. Rock and Soil Mechanics, 2023, 44(12): 3370-3382.
[3] SHI Lan-tian, LI Chuan-xun, YANG Yang. Analytical solution for consolidation of soft soils with vertical drains by considering variable well resistance with time and depth and time-dependent loading [J]. Rock and Soil Mechanics, 2023, 44(1): 183-192.
[4] HU Hui-hua, HE Jian-qing, NIE Shi-cheng, . One-dimensional consolidation creep model for sandy grain muddy soil of Dongting Lake [J]. Rock and Soil Mechanics, 2022, 43(5): 1269-1276.
[5] JIANG Wen-hao, LI Jiang-shan, HUANG Xiao, CHENG Xin, WAN Yong, . Analytical solution for one-dimensional consolidation of saturated clay considering partial drainage boundary under non-isothermal distribution condition [J]. Rock and Soil Mechanics, 2022, 43(10): 2744-2756.
[6] QIU Chao, LI Chuan-xun, LI Hong-jun, . Analytical solutions for one-dimensional nonlinear large-strain consolidation of high compressible soil under a ramp loading [J]. Rock and Soil Mechanics, 2021, 42(8): 2195-2206.
[7] CHEN Yu, LI Chuan-xun, FENG Cui-xia, . Analytical solution for one-dimensional consolidation of soft soils under a partially permeable boundary condition and a time-dependent loading considering the threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2021, 42(11): 3008-3016.
[8] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[9] LI Chen, WU Wen-bing, MEI Guo-xiong, ZONG Meng-fan, LIANG Rong-zhu, . Analytical solution for 1D degradation-consolidation of municipal solid waste under different drainage conditions [J]. Rock and Soil Mechanics, 2019, 40(8): 3071-3080.
[10] TIAN Yi, WU Wen-bing, JIANG Guo-sheng, MEI Guo-xiong, XU Bao-jun, . One-dimensional consolidation of viscoelastic saturated soils with fractional order derivative based on continuous drainage boundary [J]. Rock and Soil Mechanics, 2019, 40(8): 3054-3061.
[11] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[12] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[13] ZHOU Ya-dong, DENG An, LU Qun, . A one-dimensional consolidation model considering large strain for unsaturated soil [J]. , 2018, 39(5): 1675-1682.
[14] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[15] YANG Xiao-mei, LAI Qiang-lin. Time-domain equivalent linearization method for two-dimensional seismic response analysis [J]. , 2017, 38(3): 847-856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!