Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (6): 1533-1545.doi: 10.16285/j.rsm.2021.2120

Previous Articles     Next Articles

Shear fracture mechanical properties and acoustic emission characteristics of discontinuous jointed granite

WANG Gang1, 2, 3, SONG Lei-bo1, 3, LIU Xi-qi2, BAO Chun-yan1, 3, LIN Man-qing4, LIU Guang-jian1, 3   

  1. 1. School of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China; 2. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430070, China; 3. Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China; 4. School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430070, China
  • Received:2021-12-16 Revised:2022-04-12 Online:2022-06-21 Published:2022-06-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42002275, 51504167), the Natural Science Foundation of Zhejiang Province (LQ21D020001), the China Postdoctoral Science Foundation (2021M692319) and the Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province(PCMGH-2021-03).

Abstract: To investigate the fracture mechanical behavior and failure mechanism of jointed rock mass under compression and shear load, shear tests were carried out on intact and discontinuous jointed granite. The macroscopic mechanical properties, acoustic emission signal characteristics and mesoscopic evolution law by particle flow simulation were analyzed through the experiment. A method predicting shear failure of granite was proposed by using the acoustic emission signal characteristics and its key information points. The results show that the rock integrity is damaged by the joint, and the shear modulus and peak shear strength of the rock are reduced. In addition, the existence of joints will affect the propagation path and failure mode of cracks, and the influence will be weakened with the increase of normal stress. The normal stress and joints have significant effects on the acoustic emission characteristic points. The slow growth of acoustic emission signal and the continuous decline of b value can be used as the precursor characteristics of rock shear failure. The acoustic emission signal characteristics and its key information points can be used to effectively predict the shear failure process of granite. The research results provide a reference for the shear failure mechanism analysis and stability prediction of jointed rock mass.

Key words: rock mechanics, discontinuous joint, granite, acoustic emission, failure mechanism

CLC Number: 

  • TU45
[1] HUANG Man, NING Hao-sheng, HONG Chen-jie, TAO Zhi-gang, LIU Yu-xing, ZHANG He, . Shear behaviors of infilled joints reinforced with second-generation negative Poisson’s ratio bolts [J]. Rock and Soil Mechanics, 2025, 46(S1): 131-140.
[2] YANG Xuan-yu, WANG Yong, . Experimental study on shear behavior of regular soil-rock interface considering asperity widths [J]. Rock and Soil Mechanics, 2025, 46(S1): 195-204.
[3] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[4] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[5] LI Xiao-feng, LI Hai-bo, LIU Li-wang, FU Shuai-yang, . Tensile failure characteristics and mesoscopic mechanism of rocks under impact loading [J]. Rock and Soil Mechanics, 2025, 46(8): 2387-2398.
[6] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[7] CHU Chao-qun, BAO Xing-jia, MAO Ming-fa, WU Shun-chuan, CUI He-jia, . Experimental study of acoustic emission characteristics and failure forms of deep-buried limestone under triaxial compression [J]. Rock and Soil Mechanics, 2025, 46(7): 2049-2061.
[8] LYU Meng, WANG Liang-qing, XIE Ni, ZHU Lin-feng, AN Cai-long, KE Rui, WANG Xu-chen, . Shear characteristics and acoustic emission response characteristics of anchored heterogeneous structural plane [J]. Rock and Soil Mechanics, 2025, 46(7): 2106-2120.
[9] MA Chun-de, KANG Zi-hao, YANG Wen-yuan, TAN Guan-shuang, ZHAO Jun-kang, . Experimental study on directional independence of multi-stage stress memory in granite under different loading rates [J]. Rock and Soil Mechanics, 2025, 46(6): 1709-1718.
[10] TANG Ju-peng, HUANG Lei, PAN Yi-shan, REN Ling-ran, ZHANG Xin, ZHANG Zhong-hua, . Experimental study on coal and gas outburst simulation in abrupt change area of coal seam dip [J]. Rock and Soil Mechanics, 2025, 46(6): 1719-1730.
[11] HAN Shi-ying, WANG Hang-long, PENG Jun, ZHU Jun-xing, WANG Lin-fei, PAN Kun, . Experimental investigation on influence of structural plane on rockburst characteristics of hard surrounding rock in a deep-buried tunnel [J]. Rock and Soil Mechanics, 2025, 46(6): 1765-1776.
[12] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[13] GAO Ping-hong, GAO Chen-bo, PENG Cheng-wei, LIU Fei-yu, . Model test and discrete element analysis of granite residual soil slopes under rainfall conditions [J]. Rock and Soil Mechanics, 2025, 46(5): 1632-1642.
[14] ZHANG Yan-bo, ZHOU Hao, LIANG Peng, YAO Xu-long, TAO Zhi-gang, LAI You-bang, . Acoustic emission location method of rock based on time precise picking and intelligent optimization algorithm [J]. Rock and Soil Mechanics, 2025, 46(5): 1643-1656.
[15] SHANG Zhao-wei, KONG Ling-wei, YAN Jun-biao, GAO Zhi-ao, WANG Fei, LI Cheng-sheng, . Small-strain shear modulus properties of unsaturated granitic residual soils and determination method of soil-water retention curves [J]. Rock and Soil Mechanics, 2025, 46(4): 1131-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!