Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 259-267.doi: 10.16285/j.rsm.2022.0199

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Gas pressure monitoring test and prediction model of single well aeration in landfill

JIN Jia-xu1, ZHU Lei1, 2, 3, LIU Lei2, 3, 4, CHEN Yi-jun2, 5, YAO Yuan6, GAO Teng-fei1, 2, LI Ruo-xin2, 3   

  1. 1. School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 4. IRSM-CAS/HK Poly. Univ. Joint Laboratory on Solid Waste Science, Wuhan, Hubei 430071, China; 5. Wuhan CAS-ITRI Solid Waste Resources Co., Ltd., Wuhan, Hubei 430070, China; 6. Wuhan Environment Investment & Development Co., Ltd., Wuhan, Hubei 430019, China
  • Received:2022-02-22 Accepted:2022-08-18 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41977254), the Youth Innovation Promotion Association CAS of Hubei Province (2021CFA096), the Foundation for Innovative Research Groups of Hubei Province (2019CFA012) and the Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education of Tongji University (KLE-TJGE-B2001).

Abstract: Determining the characteristics of gas pressure distribution during aeration in landfills can provide key technical and theoretical support for aerobic ventilation engineering. Relying on the field single well aeration test and based on the theory of seepage mechanics, this study conducted gas pressure distribution monitoring tests under different aeration intensity conditions, analyzed the temporal and spatial distribution characteristics of the gas pressure during the aeration process, and deduced an one-dimensional steady-state analytical solution (AGPP model) of the gas pressure distribution in the garbage soil under the aeration conditions. By combining with the on-site gas pressure monitoring results, a gas pressure prediction model (EGPP model) with aeration intensity as the core parameter was constructed. The test results show that a low-pressure aeration intensity can also achieve aeration effect, and the gas is filled around the gas injection well in a short time. The reliability of the two models is preliminarily verified by comparing the field monitoring data with the AGPP model and the EGPP model. This study provides a new method for predicting and evaluating landfill gas pressure distribution during aerobic ventilation.

Key words: waste, landfill, single well aeration, gas pressure, field test, prediction model

CLC Number: 

  • TU 196.2
[1] ZHANG Qi, WANG Ju, LIU Jiang-feng, CAO Sheng-fei, XIE Jing-li, CHENG Jian-feng, . Core disposal elements spacing design for high-level radioactive waste repository under coupled thermo-hydro-mechanical condition [J]. Rock and Soil Mechanics, 2025, 46(8): 2626-2638.
[2] HUO Liang, WANG Gui-bin, WU Shu-liang, ZHANG Xiu-xiang, HUANG Zhi-guo, WU Zhi-chun, . A clustering model of discontinuity orientations based on mixed Fisher distribution [J]. Rock and Soil Mechanics, 2025, 46(7): 2211-2223.
[3] SUN Wen-chao, WANG Jun-hao, XU Wen-jie, DONG Xiao-yang, REN He, WANG Hong-bing, ZHANG Xue-jie, WANG Heng-wei, . Stability and disaster dynamics analysis of highway debris dump site based on material point method [J]. Rock and Soil Mechanics, 2025, 46(3): 991-1000.
[4] WU Di, CHEN Rong, KONG Gang-qiang, NIU Geng, MIAO Yu-song, WANG Zhen-xing. Field test and numerical simulation on thermo-mechanical response characteristics of a bridge energy row pile under heating-cooling cycles [J]. Rock and Soil Mechanics, 2025, 46(11): 3649-3660.
[5] DING Qian-shen, JIN Jia-xu, CAO Tian-shu, LIU Lei, . Effect of aerobic degradation on settlement characteristics of municipal solid waste and dry unit weight prediction model [J]. Rock and Soil Mechanics, 2025, 46(10): 3065-3076.
[6] WANG Xin-qing, ZHANG Xiao-chao, PEI Xiang-jun, . Fractal grading equation and maximum dry density prediction model of waste slag soil [J]. Rock and Soil Mechanics, 2025, 46(10): 3157-3166.
[7] SHEN Jun, CHENG Yin, JIN Xiao-ping, SI Ji-ping, YANG Tian-jun, YU Hao, YU Kun, . Experimental study on performance of waste slag based geopolymer stabilized silt clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 147-156.
[8] GUO Xiao-gang, MA Lei, ZHANG Chao, GAN Shu-cheng, WANG Hua, GAN Yi-xiong, ZHOU Tong, . A method for controlling heightening rate and slope stability of waste dumps with soft soil base [J]. Rock and Soil Mechanics, 2024, 45(S1): 596-606.
[9] WEN Shao-jie, CHENG Wen-chieh, HU Wen-le, . Experimental study on gas breakthrough pressure and cyclic gas permeability characteristics of loess cover layer [J]. Rock and Soil Mechanics, 2024, 45(S1): 471-476.
[10] ZHOU Feng-xi, ZHAO Wen-cang. Estimating unfrozen water content in unsaturated frozen soils based on soil water characteristic curve [J]. Rock and Soil Mechanics, 2024, 45(9): 2719-2727.
[11] CUI Yun-liang, PAN Fang-ran, GAO Xuan-yuan, JIN Zi-yuan, . A calculation method of permeability coefficient of clogging zone in vacuum preloading of waste slurry [J]. Rock and Soil Mechanics, 2024, 45(7): 2085-2093.
[12] FENG Shi-jin, XU Yi, YANG Jun-yi, ZHENG Qi-teng, ZHANG Xiao-lei, . Risk assessment of landfill instability based on set pair-combination weighting [J]. Rock and Soil Mechanics, 2024, 45(7): 2129-2139.
[13] XIONG Shu-sen, HUANG Yun-han, LAI Ying, . Embedment mechanism of a drag anchor in layered soils considering shank effect [J]. Rock and Soil Mechanics, 2024, 45(5): 1495-1504.
[14] RAN Yi-han, XIAO Shi-guo, LIAO Jia-qian, WANG Chu, . Simplified and modified algorithms for dynamic compressive stress in mixed soil-rock fills under dynamic compaction [J]. Rock and Soil Mechanics, 2024, 45(4): 1121-1128.
[15] MIN Fan-lu, SHEN Zheng, LI Yan-cheng, YUAN Da-jun, CHEN Jian, LI Kai, . Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism [J]. Rock and Soil Mechanics, 2024, 45(2): 364-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!