Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 31-42.doi: 10.16285/j.rsm.2022.0221

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Shear damage mechanism of coarse-grained materials considering strain localization

ZHAO Shun-li1, 2, YANG Zhi-jun1, FU Xu-dong1, FANG Zheng1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
  • Received:2022-02-28 Accepted:2022-06-18 Online:2023-01-16 Published:2023-01-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978540).

Abstract: In view of the mechanical properties of coarse-grained materials, such as strain softening and dilatancy, a generalized shear damage mechanical model with wide applicability was established in this study by considering the strain localization phenomenon marked by shear band. This damage model adopted the mathematical simplification of shear band in the envelope theory, and the stress-strain relationship equation of coarse-grained material was derived based on the strain equivalence principle and Weibull distribution. A nonlinear functional relationship between axial and volumetric plastic strain was proposed to describe the weakening of dilatancy based on the mechanism of dilatancy. Combined with the servo process of coarse-grained materials in triaxial compression tests, a method to determine the parameters of damage model was proposed based on genetic algorithm. By conducting a series of triaxial compression tests under different confining pressures, the shear damage mechanical model was validated, and the effects of the evolution of shear band parameters on the strength and deformation characteristics of coarse-grained materials were further analyzed. The results indicate that the proposed shear damage mechanical model considering the strain localization characteristics can accurately simulate the strain-softening and dilatancy characteristics of coarse-grained materials, and effectively reveal the influence mechanism of the internal deformation of the shear band on the overall macroscopic deformation of the coarse-grained sample. The evolution of the shear band parameters with the surrounding confining pressures in the model was consistent with the mesoscopic mechanism of coarse-grained materials. The strength composition calculated by this model was in good agreement with the micro mechanism, such as the breakage and reorganization of coarse-grained particles.

Key words: coarse-grained material, shear damage, stress-strain equation, strain localization, strain softening, dilatancy

CLC Number: 

  • TU 411
[1] WANG Jiang-feng, WU Han-bing, ZHAO Shun-li, DU Chun-xue, ZHANG Miao, . Mechanical evolution characteristics of loading and unloading of red sandstone in a certain water conveyance tunnel considering compaction deformation [J]. Rock and Soil Mechanics, 2025, 46(S1): 121-130.
[2] ZHOU Xiong-xiong, HUANG Jia-shuo, LI Ruo-ting, ZHANG Jian-yu, . Modified Cambridge model and its parameters for wetting deformation in rockfill materials [J]. Rock and Soil Mechanics, 2025, 46(9): 2703-2710.
[3] LI Lin, ZHANG Deng-hong, ZHANG Miao, GU Xiao-qiang, XU Long-fei, . Load transfer model of pile-unsaturated loess interface considering hydro-mechanical coupling effects [J]. Rock and Soil Mechanics, 2025, 46(5): 1343-1355.
[4] ZHANG Pei, YANG Cheng-ru, HOU Shi-wei, DU Xiu-li, . A mesoscopic numerical method for simulating soil-rock mixture based on cohesive zone element [J]. Rock and Soil Mechanics, 2025, 46(5): 1620-1631.
[5] XU Bin, CHEN Ke-hao, PANG Rui, . Dilatancy equation and bounding surface model of over-consolidated clay [J]. Rock and Soil Mechanics, 2025, 46(2): 449-456.
[6] GENG Xiao-wei, CHEN Cheng, SUN Zhong-hua, LI Wei, WANG Yong, XU Meng-bing, YU Song, . A constitutive model of sand considering fabric anisotropy based on generalized potential theory [J]. Rock and Soil Mechanics, 2025, 46(10): 3175-3186.
[7] SONG Yang, WANG He-ping, ZHANG Wei-dong, ZHAO Li-cai, ZHOU Jian-hua, MAO Jing-han, . Shear characteristics of anchored filling jointed rock mass under constant normal stiffness [J]. Rock and Soil Mechanics, 2024, 45(9): 2695-2706.
[8] ZHANG Chang-guang, ZHOU Wei, XU Hao, ZHAO Shuai, SUN Shan-shan, . Brittle-plastic solutions of disturbance-damaged rock tunnels based on unified strength theory [J]. Rock and Soil Mechanics, 2024, 45(5): 1343-1355.
[9] XU Bin, WANG Xing-liang, PANG Rui, CHEN Ke-hao, . Elastoplastic constitutive model of sand-gravel composites accounting for fabric evolution effects [J]. Rock and Soil Mechanics, 2024, 45(11): 3197-3211.
[10] SUN Wei, WANG Rui, ZHANG Jian-min, . Numerical simulation for liquefaction-induced shear strain localization based on peridynamics [J]. Rock and Soil Mechanics, 2024, 45(10): 3130-3138.
[11] CUI Xin-zhuang, JIANG Peng, WANG Yi-lin, JIN Qing, CHEN Lu, . On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer [J]. Rock and Soil Mechanics, 2024, 45(1): 141-152.
[12] WANG Si-yuan, JIANG Ming-jing, LI Cheng-chao, ZHANG Xu-dong, . Strain localization formation of deep-sea methane hydrate-bearing soils by discrete element simulation of the triaxial test [J]. Rock and Soil Mechanics, 2023, 44(11): 3307-3317.
[13] WANG Dong-yong, CHEN Xi, WANG Fang-yu, PENG Li-yun, QI Ji-lin, . Analysis of geotechnical strain localization based on penalty-based couple stress theory [J]. Rock and Soil Mechanics, 2022, 43(S2): 533-540.
[14] JIANG Chang-bao, YU Tang, WEI Wen-hui, DUAN Min-ke, YANG Yang, WEI Cai, . Permeability evolution model of coal under loading and unloading stresses [J]. Rock and Soil Mechanics, 2022, 43(S1): 13-22.
[15] LIU Yan-jing, WANG Lu-jun, ZHU Bin, CHEN Yun-min, . An elastoplastic constitutive model for hydrate-bearing sediments considering the effects of filling and bonding [J]. Rock and Soil Mechanics, 2022, 43(9): 2471-2482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!