Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 75-87.doi: 10.16285/j.rsm.2022.0267

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on rock burst of granite with prefabricated single crack under true-triaxial stress condition with a free face

LUO Dan-ni1, 2, 3, LU Si-hang2, 3, SU Guo-shao2, 3, TAO Hong-hui1   

  1. 1. China Energy Engineering Group Guangxi Electric Power Design Institute Co., Ltd., Nanning, Guangxi 530007, China; 2. School of Civil and Architecture Engineering, Guangxi University, Nanning, Guangxi 530004, China; 3. Guangxi Provincial Engineering Research Center of Water Security and Intelligent Control for Karst Region, Guangxi University, Nanning, Guangxi 530004, China
  • Received:2022-03-08 Accepted:2022-04-24 Online:2023-01-16 Published:2023-01-12
  • Supported by:
    This work was supported by the China Postdoctoral Science Foundation (2018M633299) and the National Natural Science Foundation of China (52179125, 51709050).

Abstract: A rock burst experiment of granite with prefabricated single crack under the true-triaxial stress condition with a free face was carried out in this paper, and the rock burst process was monitored by high-speed camera system and acoustic emission (AE) system. The failure mode, strength, deformation and AE evolution characteristics of the rocks with different orientations of cracks were investigated. The relationships between crack orientation and rock burst process and ejection kinetic energy was analyzed. The rock burst mechanisms of the rocks with prefabricated single crack and the intact rocks were compared. The analysis of mechanical properties shows that, with the decrease of crack dip angle, the failure mode of rock samples generally changes from "internal shear and external splitting" to "Z-type oblique shear", and the weakening effect of cracks on rock strength is increasing. When the crack dip angle is less than 30°, the peak stress of rock is generally only about half that of the intact rock samples. The larger the length of the small-dip-angle crack is, the more obvious the splitting phenomenon of the rock slab will be, the slightly larger the rock burst pit will be, the larger the strength reduction amplitude will be, and the smaller the peak axial strain will be. The crack close to the free surface of rock samples will aggravate the splitting effect of the rock slab, large deformation and numerous cracks will occur in the plastic stage generally. When the crack is exposed and cuts off the free surface, it will be difficult to form rock burst pits. The analysis of rock burst process and ejection kinetic energy shows that, with the decrease of crack dip angle, the ejection kinetic energy of rock samples decreases significantly first and then increases slightly, the dip angle of 30° is the turning point of transformation. The closer the internal cracks of the rock sample are to the free surface, the smaller the ejection kinetic energy of the rock sample will be. The resin-filled crack greatly increases the ejection kinetic energy of rock sample, but not when cement fills cracks. The analysis of AE characteristics shows that, the longer length and the smaller dip angle of the crack are, the larger the time proportion of "quiet period" to rock burst process is, and the smaller the absolute energy proportion of rock burst in the post-peak stage is. If the crack is close to rock free surface, two "quiet periods" generally appear, and one more sudden rise will also appear in the AE absolute energy evolution curve. With the increase of crack dip angle, the duration of the initial fluctuation stage of b value of rock samples with crack becomes longer, the decrease rate of decline stage becomes larger, and the minimum b value point is closer to the rock burst time. In general, the mechanism of strain-type rock burst in rocks with cracks differs from that in intact rocks. The mechanism of strain-type rock burst in rocks with cracks can be classified into two types: shear-fracture type and tension-slabbing type. The research results provide a scientific basis for the mechanism analysis of rock burst disaster of fractured rocks and the early-warning by using AE technology.

Key words: rock burst, rock, crack, acoustic emission, ejection kinetic energy

CLC Number: 

  • TU 452
[1] MIAO Ri-cheng, TANG Bei, QI Fei, JIANG Zhi-an, CUI Wei, . Discrete element method simulation of rock breaking by tunnel boring machine disc cutter considering the effects of random fractures [J]. Rock and Soil Mechanics, 2025, 46(S1): 541-552.
[2] HUANG Man, NING Hao-sheng, HONG Chen-jie, TAO Zhi-gang, LIU Yu-xing, ZHANG He, . Shear behaviors of infilled joints reinforced with second-generation negative Poisson’s ratio bolts [J]. Rock and Soil Mechanics, 2025, 46(S1): 131-140.
[3] JIN Jie-fang, XIONG Hui-ying, XIAO You-feng, PENG Xiao-wang. Experimental study on sensitivity and propagation attenuation characteristics of rock ultrasonic wave under three-dimensional in-situ stress [J]. Rock and Soil Mechanics, 2025, 46(S1): 183-194.
[4] YANG Xuan-yu, WANG Yong, . Experimental study on shear behavior of regular soil-rock interface considering asperity widths [J]. Rock and Soil Mechanics, 2025, 46(S1): 195-204.
[5] LI Xiao-zhao, YAN Huai-wei, LI Lian-jie, QI Cheng-zhi. A macro-micro mechanical model of dynamic direct tensile fracture in pre-tensioned brittle rocks [J]. Rock and Soil Mechanics, 2025, 46(S1): 217-227.
[6] HOU Ke-peng, JIANG Fan, ZHANG Chao, GONG Jing-han, . Surface morphology effect of soil-rock mixture-bedrock interface shear [J]. Rock and Soil Mechanics, 2025, 46(S1): 271-284.
[7] YU Zhao-sheng, CHEN Xiao-bin, ZHOU Yu-qing, LÜ Xin-long, . Release rate of disintegration surface and disintegration characteristics of red-layer soft rock [J]. Rock and Soil Mechanics, 2025, 46(S1): 285-296.
[8] QIN Li-ke, GUO Rui-qi, ZHAO Hao-chen, ZHEN Gang, WANG Qi, . Capillary water dynamic distribution of stone relics under environmental evaporation conditions [J]. Rock and Soil Mechanics, 2025, 46(S1): 354-365.
[9] RAN Long-zhou, YUAN Song, WANG Xi-bao, ZHANG Ting-biao, LIU De-jun, LI Liang-pu, . Calculation method for surrounding rock pressure in deep-buried tunnels using shield tunnel boring machine method considering the interaction among surrounding rock-shield body-grouting material-lining segments [J]. Rock and Soil Mechanics, 2025, 46(S1): 366-376.
[10] ZHAO Kai, MA Hong-ling, SHI Xi-lin, LI Yin-ping, YANG Chun-he, . Long-term stability assessment of salt caverns for compressed air energy storage based on creep-fatigue constitutive model [J]. Rock and Soil Mechanics, 2025, 46(S1): 1-12.
[11] FU Qiang, YANG Ke, LIU Qin-jie, SONG Tao-tao, WU Ben-niu, YU Peng, . Interface strength characteristics of surrounding rock-lining composite structures under cyclic loading [J]. Rock and Soil Mechanics, 2025, 46(S1): 40-52.
[12] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[13] LIANG Jin-ping, LI Xiao-rui, JING Hao-yong, HOU Gong-yu, SU Zhan-dong, ZHANG Ming-lei, . Yield mechanism and unloading deformation failure characteristics of thick-walled cylindrical surrounding rock specimens [J]. Rock and Soil Mechanics, 2025, 46(9): 2676-2686.
[14] WANG Xiang-jun, LI Ying-ming, ZHAO Guang-ming, MENG Xiang-rui, FAN Chao-tao, FU Qiang, . A mechanical analysis method for fully grouted rock bolts considering rod yielding and anchorage interface slip under the influence of surrounding rock deformation [J]. Rock and Soil Mechanics, 2025, 46(9): 2687-2702.
[15] ZHOU Xiong-xiong, HUANG Jia-shuo, LI Ruo-ting, ZHANG Jian-yu, . Modified Cambridge model and its parameters for wetting deformation in rockfill materials [J]. Rock and Soil Mechanics, 2025, 46(9): 2703-2710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!