Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (11): 3099-3108.doi: 10.16285/j.rsm.2023.0652

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on the identification method of tunnel surrounding rock failure zone based on continuous discontinuous analysis theory

XIAO Ming-qing1, 2, XU Chen1, 2, YANG Jian1, 2, WU Jia-ming1, 2, FU Xiao-dong3, ZHOU Yong-qiang3   

  1. 1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China; 2. National & Local Joint Engineering Research Center of Underwater Tunneling Technology, Wuhan, Hubei 430063, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2023-05-24 Accepted:2023-09-10 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work was supported by the National Key Research and Development Program (2021YFB2600400).

Abstract:

Accurate analyzing the scope of tunnel excavation failure zone has important guidance and engineering significance in determining support parameters reasonably. This study focuses on the identification methods of tunnel surrounding rock failure zone, specifically the continuous medium analysis method and the continuous-discontinuous method represented by the finite element-discrete element coupling method (FDEM). Firstly, the continuous medium analysis method and FDEM identification criteria for surrounding rock failure are studied. Then the rock mass is divided into elastic rock elements and elastic-plastic interface elements. Based on the concept of equivalent continuous model, the relationship between the mechanical parameters of interface elements and rock elements and rock mass element is mathematically derived. The connection between the parameter values of these two methods is established for the first time, resolving the challenge of determining values in the continuous-discontinuous method. Finally, the ranges of surrounding rock failure zones simulated by these two methods during the excavation process of railway tunnels with different lithology and cross-sections are compared. According to the range of mechanical parameters for each level of surrounding rock mass in the specification, the range of values for the main failure parameters of surrounding rock, such as penalty parameter and fracture energy, in FDEM, is given for each level of surrounding rock. The simulation results of railway tunnel excavation with different lithology and cross sections using the continuous medium method represented by FLAC3D and FDEM method show that the plastic zone obtained by the continuous medium method, and the failure zone obtained by the plastic limit strain, as well as the crack growth zone and failure zone obtained by the continuous-discontinuous method, are generally consistent in terms of distribution range, shape and failure mode. The method proposed in this article for determining the failure parameters of surrounding rock in FDEM is verified as reasonable and feasible.

Key words: continuous-discontinuous method, FDEM, tunnel, identification of failure zone, parameter values, continuous medium analysis method

CLC Number: 

  • TU 451
[1] ZHANG Zhi-guo, LI Nai-yi, NIU Rui, WANG An-yuan, ZHU Zheng-guo, . Stress and displacement solution using complex variable functions for double-arch tunnel considering construction effects of middle guideway [J]. Rock and Soil Mechanics, 2025, 46(S1): 141-158.
[2] ZHANG Zhi-guo, CHEN Yin-ji, ZHU Zheng-guo, WEI Gang, SUN Miao-miao, . Analytical solution for settlement of viscoelastic ground induced by small curvature shield tunnel excavation in soft soil [J]. Rock and Soil Mechanics, 2025, 46(S1): 309-321.
[3] RAN Long-zhou, YUAN Song, WANG Xi-bao, ZHANG Ting-biao, LIU De-jun, LI Liang-pu, . Calculation method for surrounding rock pressure in deep-buried tunnels using shield tunnel boring machine method considering the interaction among surrounding rock-shield body-grouting material-lining segments [J]. Rock and Soil Mechanics, 2025, 46(S1): 366-376.
[4] MIAO Ri-cheng, TANG Bei, QI Fei, JIANG Zhi-an, CUI Wei, . Discrete element method simulation of rock breaking by tunnel boring machine disc cutter considering the effects of random fractures [J]. Rock and Soil Mechanics, 2025, 46(S1): 541-552.
[5] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[6] SONG Li-qi, ZHANG Min, XU Xiao, SUN Jing-wen, YU Kui, LI Xin-yao, . Inversion analysis of shield tunnel considering the rotation effect of segment joint based on distributed fiber optic sensing [J]. Rock and Soil Mechanics, 2025, 46(8): 2483-2494.
[7] SONG Mu-yuan, YANG Ming-hui, CHEN Wei, LU Xian-zhui, . Prediction of shield tunneling-induced soil settlement based on self-attention recurrent neural network model [J]. Rock and Soil Mechanics, 2025, 46(8): 2613-2625.
[8] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[9] RUI Rui, LIN A H, YANG Jun-chao, YANG Shuo, . Evolution of soil arching in passive trapdoor tests [J]. Rock and Soil Mechanics, 2025, 46(6): 1657-1666.
[10] HAN Shi-ying, WANG Hang-long, PENG Jun, ZHU Jun-xing, WANG Lin-fei, PAN Kun, . Experimental investigation on influence of structural plane on rockburst characteristics of hard surrounding rock in a deep-buried tunnel [J]. Rock and Soil Mechanics, 2025, 46(6): 1765-1776.
[11] SHE Lei, ZHAO Yang, LI Yan-long, LI Dong-feng, SONG Qing, ZHENG Ji-guang, CHEN Chen, . Rapid estimation method for in-site rock mass mechanical parameters using tunnel boring machine tunneling parameters [J]. Rock and Soil Mechanics, 2025, 46(5): 1595-1604.
[12] YU Kui, ZHANG Min, QIN Wen-quan, SUN Jing-wen, ZHANG Kai-xiang, SONG Li-qi, . Inversion analysis of deformation and void formation in buried pipelines induced by tunneling using distributed fiber-optic sensing [J]. Rock and Soil Mechanics, 2025, 46(3): 894-904.
[13] WU Xiao-tian, YAO Yang-ping, WEI Ran, CUI Wen-jie. Numerical simulation of soil deformation induced by tunnel construction with unified hardening model [J]. Rock and Soil Mechanics, 2025, 46(3): 1013-1024.
[14] WANG Xue-bin, CHEN Shuang-yin, ZHENG Yi-fang, LIAO Pei-bin, . Lagrangian-discrete element method considering creep shear cracking and its application [J]. Rock and Soil Mechanics, 2025, 46(2): 613-624.
[15] HUANG Ming-hua, ZHONG Yu-xuan, LU Jin-bin, WANG Ke-ping. Deformation analysis of underlying shield tunnel induced by foundation pit excavation based on discontinuous foundation beam model [J]. Rock and Soil Mechanics, 2025, 46(2): 492-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!