Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (11): 3461-3480.doi: 10.16285/j.rsm.2024.0014

• Numerical Analysis • Previous Articles     Next Articles

Research progress and discussion on problems of sandy soil SHPB impact tests and numerical simulations

WU Lin, LYU Ya-ru, ZHANG Shen, DING Si-chao,   

  1. College of Mechanics and Engineering Science, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2024-02-06 Accepted:2024-03-03 Online:2024-11-11 Published:2024-11-15
  • Supported by:
    This work was supported by the Natural Science Foundation of China (52279097, 51779264) and the Jiangsu Province “Qing Lan Project”.

Abstract: Dynamic properties of sandy soil under medium-high strain rates are of great significance for protection engineering, pile penetration, ship anchoring, aircraft landing, and so on. This paper reviews the current research status of split Hopkinson pressure bar (SHPB) impact tests and numerical simulations on sandy soil. The key issues in the research of sandy soil impact characteristics are summarized as follows: (1) The SHPB test still faces uncertainties for granular materials, such as the lack of standardized test sample size, difficulties in controlling boundary conditions, and the immaturity of triaxial testing methods. Future triaxial SHPB tests need to address issues related to measuring radial deformation of the samples and maintaining consistent confining pressure. (2) Due to uncertainties in gas and water discharge under test conditions and the presence of inertial effects, the accurate determination of strain rate effects becomes challenging. (3) The impact characteristics of granular materials are influenced by moisture content, which is correlated with changes in pore water pressure and pore air pressure. However, measuring these related variables is difficult, making it challenging to analyze the results. It is necessary to develop a device that completely eliminates the effects of gas and water discharge to mitigate the influence of boundary conditions. (4) To study the impact characteristics of sandy soils, it is necessary to overcome computational limitations and establish numerical models that account for complex mechanisms such as water content and particle fragmentation. Existing methods such as the finite element method, discrete element method, and coupled methods are unable to uniformly simulate the continuity of wave propagation and particle fragmentation. (5) It is crucial to develop constitutive models that consider the strain rate effects and can simulate complex mechanisms such as water content and particle fragmentation. This will help refine the theoretical framework of soil mechanics at medium to high strain rates.

Key words: sand, split Hopkinson pressure bar (SHPB), dynamic tests, dynamic properties, strain rate effect

CLC Number: 

  • O 347.3
[1] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[2] WANG Ning-bo, YAO Yang-ping, LIU Lin, LI Xiang-yu, MAO An-qi, LI Ning, . Unified hardending model for sand considering confining pressure effects [J]. Rock and Soil Mechanics, 2025, 46(S1): 297-308.
[3] JIN Gui-xiao, LIN Shao-cong, JIANG Qi-wu, HUANG Ming, LI Xi, . Seepage mathematical model of enzyme-induced calcium carbonate precipitation-treated sandy soil based on the Kozeny-Carman equation [J]. Rock and Soil Mechanics, 2025, 46(8): 2376-2386.
[4] SHEN Yang, SHEN Jia-yi, LIANG Hui, FAN Ke-wei. Triaxial tests on simulated calcareous sand based on 3D printing technology [J]. Rock and Soil Mechanics, 2025, 46(8): 2353-2362.
[5] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[6] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[7] FAN Meng, LI Jing-jun, YANG Zheng-quan, LIU Xiao-sheng, ZHU Kai-bin, ZHAO Jian-ming, . Applicability of standard penetration test based liquefaction assessment methods for sandy soil in deep layer [J]. Rock and Soil Mechanics, 2025, 46(7): 2085-2094.
[8] CHEN Jia-rui, FAN Bao-yun, YE Jian-hong, ZHANG Chun-shun, . Particle breakage and its evolution model of calcareous sand through triaxial tests [J]. Rock and Soil Mechanics, 2025, 46(7): 2095-2105.
[9] HU Feng-hui, FANG Xiang-wei, SHEN Chun-ni, WANG Chun-yan, SHAO Sheng-jun, . Experiment on particle breakage, strength, and dilatancy of coral sand under true triaxial conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 2147-2159.
[10] ZHU Xian-xiang, ZHANG Qi, MA Jun-peng, WANG Yong-jun, MENG Fan-zhen, . Diffusion mechanism of seepage grouting in water-bearing sand layer under slurry-water replacement effect [J]. Rock and Soil Mechanics, 2025, 46(6): 1957-1966.
[11] FU Hai-ying, ZHONG Yu-wei, WANG Xiao-wen, WU Bo-han, YUAN Ran, . Critical state parameter model of sand based on subloading surface theory [J]. Rock and Soil Mechanics, 2025, 46(6): 1788-1798.
[12] QI Kai, WAN Zhi-hui, DAI Guo-liang, HU Tao, ZHOU Feng, ZHANG Peng, . Mechanical properties and microscopic mechanisms of calcareous sand solidified with different grouting materials [J]. Rock and Soil Mechanics, 2025, 46(6): 1825-1838.
[13] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[14] LIU Hong-shuai, YANG Jian-sheng, SONG Dong-song, SUN Qiang-qiang, . Centrifuge modeling on ground response of dry sand site under near-fault pulsed and non-pulsed ground motions [J]. Rock and Soil Mechanics, 2025, 46(5): 1429-1441.
[15] WU Qing-qian, SHI Lu, LI Xiao-chun, BAI Bing, . Experimental study on effects of H2O and supercritical CO2 on mechanical properties of sandstone with a low clay mineral content [J]. Rock and Soil Mechanics, 2025, 46(5): 1442-1454.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!