Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (9): 2611-2620.doi: 10.16285/j.rsm.2023.1614

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Experimental study of the influence of cation exchange capacity on hydration in interlayers of bentonite

HAO Feng-fu1, MA Tian-tian2, YU Hai-wen2, 3, WEI Chang-fu2, TIAN Hui-hui2, YI Pan-pan2   

  1. 1. Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-10-26 Accepted:2024-01-24 Online:2024-09-06 Published:2024-09-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41972290, 51939011, 52109133) and the Talent Special Project of Science and Technology of Guangxi (AD20325010).

Abstract: Bentonite is commonly utilized as a waterproofing and buffering material due to its high expansibility and very low permeability. The cation exchange capacity is a crucial parameter that influences the microstructure of montmorillonite, thereby modifying its expansibility, hydraulic properties, and diffusion characteristics. Various montmorillonite samples with reduced cation exchange capacity were produced by heating lithium-modified bentonite at varying temperatures. By employing nuclear magnetic resonance and X-ray diffraction techniques, we acquired information on the distribution of pore water and interlayer spacing in montmorillonite with reduced cation exchange capacity under varying water content. Furthermore, we investigated the effect of cation exchange capacity on hydration in montmorillonite interlayers. The research demonstrates that a decrease in cation exchange capacity results in a reduction in the number of expandable layers, consequently lowering the liquid limit of bentonite. An preliminary approach for determining the proportion of expandable layers is suggested using the T2 distribution curve derived from nuclear magnetic resonance. The results from this method closely align with the proportion of reduced exchangeable cations.

Key words: cation exchange capacity, reduced cation exchange capacity bentonite, interlayer hydration, number of expansive layers, nuclear magnetic resonance

CLC Number: 

  • TU411
[1] SONG Yong-jun, LU Yun-long, WANG Shuang-long, XIE Li-jun, CAO Jing-hui, AN Xu-chen, . Evolution characteristics of unfrozen water content and its influence on mechanical properties of rock during freeze-thaw process [J]. Rock and Soil Mechanics, 2025, 46(4): 1049-1059.
[2] CUI Wen-wen, DONG Xiao-qiang, LIU Xiao-yong, ZHAO Rui-yang, HE Gao-le, ZHANG Meng, ZHOU Lei, WU Xue-wen, . Hydration kinetics and hydration mechanism of red mud-based cementitious materials [J]. Rock and Soil Mechanics, 2025, 46(3): 867-880.
[3] HE Yuan-yuan, PENG Qi-lan, WANG Li, WANG Shi-mei, NIE Lei, XU Yan, LYU Yan, CHEN Yong, ZHANG Xian-wei. Investigating pore characteristics and permeability of seasonally frozen turfy soil using multiple micro-test methods [J]. Rock and Soil Mechanics, 2025, 46(1): 110-122.
[4] LIU Han-xiang, YE Diao-yu, BIE Peng-fei, ZHU Xing, . Experimental study of microscopic and mesoscopic damage features of limestone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2024, 45(3): 685-696.
[5] ZHANG Su-biao, ZHANG Fan, LI Kang-wen, MA Shuang-ze. Influence of high temperature on shear characteristics of granite with different particle sizes [J]. Rock and Soil Mechanics, 2024, 45(10): 2981-2993.
[6] WU Guang-shui, TIAN Hui-hui, HAO Feng-fu, WANG Shu-qi, YANG Wen-zhou, ZHU Ting-mei, . Rapid prediction of the permeability coefficient for soil of different dry densities with NMR T2 distribution [J]. Rock and Soil Mechanics, 2023, 44(S1): 513-520.
[7] LI Pin-liang, XU Qiang, LIU Jia-liang, HE Pan, JI Xu, CHEN Wan-lin, PENG Da-lei, . Experimental study on the micromechanism of salt influence on the permeability of remolded loess [J]. Rock and Soil Mechanics, 2023, 44(S1): 504-512.
[8] ZHAO Yan, YANG Liu, XI Ru-ru, GENG Zhen-kun, ZHANG Qian, MA Xiong-de, . CO2-H2O two-phase displacement characteristics of low permeability core using nuclear magnetic resonance and magnetic resonance imaging techniques [J]. Rock and Soil Mechanics, 2023, 44(6): 1636-1644.
[9] ZHAO Yu, YANG Zhen-hua, WANG Chao-lin, BI Jing. Experimental study on damage self-healing and strain hardening of salt rock under secondary loading [J]. Rock and Soil Mechanics, 2023, 44(5): 1457-1466.
[10] GAO Feng, XIONG Xin, XIONG Xin, ZHOU Ke-ping, . Experimental study on influence of saturation on the microwave response of basalt [J]. Rock and Soil Mechanics, 2022, 43(S2): 43-51.
[11] WANG Hai-man, NI Wan-kui, LIU Kui, . Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess [J]. Rock and Soil Mechanics, 2022, 43(7): 1845-1853.
[12] TIAN Hu-nan, TANG Ju-peng, PAN Yi-shan, YU Hong-hao, . Experimental study on the effect of average effective stress on micro adsorption and desorption characteristics of coal shale gas [J]. Rock and Soil Mechanics, 2022, 43(7): 1803-1815.
[13] MENG Xiang-chuan, ZHOU Jia-zuo, WEI Chang-fu, ZHANG Kun, SHEN Zheng-yan, YANG Zhou-jie, . Effects of salinity on soil freezing temperature and unfrozen water content [J]. Rock and Soil Mechanics, 2020, 41(3): 952-960.
[14] MA Dong-dong, CHEN Qing, ZHOU Hui, TENG Qi, LI Ke, HU Da-wei, . Experimental study of liquid CO2 fracturing mechanism of glutenite [J]. Rock and Soil Mechanics, 2020, 41(12): 3996-4004.
[15] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!