Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (5): 1620-1631.doi: 10.16285/j.rsm.2024.1109

• Numerical Analysis • Previous Articles     Next Articles

A mesoscopic numerical method for simulating soil-rock mixture based on cohesive zone element

ZHANG Pei1, YANG Cheng-ru1, HOU Shi-wei2, DU Xiu-li3   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; 2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang, Liaoning 110168, China; 3. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • Received:2024-09-09 Accepted:2025-03-10 Online:2025-05-06 Published:2025-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51908023, 52025084), the Natural Science Foundation of Beijing (8232007), the Science and Technology General Project of Beijing Municipal Education Commission (KM202310016013) and the Pyramid Talent Cultivation Project of Beijing University of Civil Engineering and Architecture (JDYC20200312).

Abstract:

The soil-rock mixture is a heterogeneous material consisting of high-strength rocks and a low-strength soil matrix, with complex interactions among its mesoscopic components under loading. Considering the mesoscopic structural characteristics, the interface between soil and rock, as well as the interior of the soil matrix, are identified as the material’s weak points. Using the cohesive model, the initiation, expansion, and fracture of cracks at weak points are described, and a cohesive element insertion program is developed. Subsequently, using the results of direct shear tests, the material parameters for the cohesive elements in the soil matrix and at the soil-rock interface are determined. A mesoscopic numerical method for soil-rock mixtures based on the cohesive model is then established. Based on this, biaxial compression numerical tests on soil-rock mixtures with varying mesoscopic structures were conducted. The influence of different mesoscopic factors on mechanical properties was clarified by analyzing the failure state of cohesive elements. Results indicate that the maximum nominal stress in shear direction of cohesive elements can be determined by the peak shear stress of the load-displacement curve in direct shear tests. The maximum effective displacement is determined by one-fifth of the maximum shear displacement, and the tangential friction coefficient is calculated by the ratio of residual shear stress to normal stress. The numerical method based on cohesive elements can effectively describe the mechanical properties and deformation behavior of soil-rock mixtures, particularly for the strain softening behavior under low confining pressure.

Key words: soil-rock mixture, cohesive zone model, a mesoscopic numerical method, mechanical behavior of interface, strain softening

CLC Number: 

  • TU432
[1] LI Lin, ZHANG Deng-hong, ZHANG Miao, GU Xiao-qiang, XU Long-fei, . Load transfer model of pile-unsaturated loess interface considering hydro-mechanical coupling effects [J]. Rock and Soil Mechanics, 2025, 46(5): 1343-1355.
[2] XIE Zhou-zhou, ZHAO Lian-heng, LI Liang, HUANG Dong-liang, ZHANG Zi-jian, ZHOU Jing, . Difference of dynamic responses of soil-rock mixture slopes with different rock contents based on shaking table test [J]. Rock and Soil Mechanics, 2024, 45(8): 2324-2337.
[3] HUANG Feng, MI Ji-long, YANG Yong-hao, DONG Guang-fa, ZHANG Ban, LIU Xing-chen, . Morphological characteristics of hysteretic curves of soil-rock mixture under stepped axial cyclic loading [J]. Rock and Soil Mechanics, 2024, 45(3): 674-684.
[4] SUN Chen-feng, WANG Bu-xue-yan, QIAN Jian-gu, WANG Jia-chao, ZHANG Jia-feng, . Creep characteristics test of soil-rock mixture subjected to loading and dry-wet cycles [J]. Rock and Soil Mechanics, 2024, 45(1): 226-234.
[5] CHENG Guang, FAN Wen, YU Ning-yu, JIANG Cheng-cheng, TAO Yi-quan, . Correlation between soil-water characteristics and microstructure of soil-rock mixture [J]. Rock and Soil Mechanics, 2023, 44(S1): 365-374.
[6] QI Tian, KONG Jian-jie, LIU Fei-yu. Effect of cyclic shear on interface characteristics of geogrid-soil-gravel mixture [J]. Rock and Soil Mechanics, 2023, 44(9): 2593-2602.
[7] YANG Zhong-ping, LI Jin, LIU Hao-yu, ZHANG Yi-ming, LIU Xin-rong, . Influence of the block stone size on shear mechanical behavior of soil-rock mixture-bedrock interface [J]. Rock and Soil Mechanics, 2023, 44(4): 965-974.
[8] LI Shui-jiang, YAO Jia-min, LIU Fei-yu, LIU Hong-bo, HOU Juan, . Analysis of shear characteristics of soil-rock mixture–geotextile interface under normal cyclic loading [J]. Rock and Soil Mechanics, 2023, 44(11): 3082-3090.
[9] ZHAO Shun-li, YANG Zhi-jun, FU Xu-dong, FANG Zheng, . Shear damage mechanism of coarse-grained materials considering strain localization [J]. Rock and Soil Mechanics, 2023, 44(1): 31-42.
[10] DONG Jian-hua, XU Bin, WU Xiao-lei, LIAN Bo, . Elastic-plastic deformation of surrounding rocks under graded yielding support of tunnel [J]. Rock and Soil Mechanics, 2022, 43(8): 2123-2135.
[11] ZHU Wen-bo, DAI Guo-liang, WANG Bo-chen, GONG Wei-ming, SUN Jie, HU Hao, . Study on cyclic characteristics and equivalent cyclic creep model of the soft clay at the bottom of suction caisson foundation [J]. Rock and Soil Mechanics, 2022, 43(2): 466-478.
[12] ZHANG Tao, LI Tao, FENG Shuo. Elastoplastic two-surface model for describing strain-softening behavior of saturated cohesive soils [J]. Rock and Soil Mechanics, 2022, 43(10): 2757-2767.
[13] XU Hua, ZHOU Ting-yu, WANG Xin-yu, ZHANG Jie, ZHANG Xiao-bo, LIU Yu-chen, . Compression test and numerical simulation research on improved red beds subgrade fillers in Sichuan-Tibet Railway [J]. Rock and Soil Mechanics, 2021, 42(8): 2259-2268.
[14] LU Yang, LIU Si-hong, ZHANG Yong-gan, YANG Meng. Experimental study and mechanism analysis of permeability performance of clayey soil-rock mixtures [J]. Rock and Soil Mechanics, 2021, 42(6): 1540-1548.
[15] LI Er-qiang, ZHANG Hong-chang, ZHANG Long-fei, ZHU Tian-yu, LU Jing-gan, FENG Ji-li, . Investigation on Brazilian tests and simulations of carbonaceous slate with different bedding angles [J]. Rock and Soil Mechanics, 2020, 41(9): 2869-2879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!