Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (8): 2765-2772.doi: 10.16285/j.rsm.2019.1710

• Geotechnical Engineering • Previous Articles     Next Articles

Three-dimensional optimization design for the direction angle of anchor cable reinforcement in wedge rock slope

AN Cai-long, LIANG Ye, WANG Liang-qing, DENG Shan, SUN Zi-hao, FAN Bin-qiang, ZHENG Luo-bin   

  1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2019-10-02 Revised:2019-12-17 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the Key Program of National Natural Science Foundation of China(41931295), the General Program of National Natural Science Foundation of China (41877258) and the National Key R&D Program of China (2017YFC1501305).

Abstract: In this paper, a new method is proposed to calculate the optimal anchorage direction angle for wedge sliding in rock slope. Taking the maximum anti-sliding increment provided by the unit length of the free segment of anchor cable as the target control variable, the characteristic parameters of slope surface and two sliding surfaces and the anchor cable design parameters are adopted as the optimization control independent variables, the pre-tensile force of the anchor cable is decomposed through the linear equations system established through coordinate system transformation. Then a new three-dimensional optimization calculation equation for the anchorage direction angle is obtained. Based on the equation, for case of the anchor cable reinforcement direction is perpendicular to the strike direction of the slope, derivative method is used to optimize the anchorage direction angle. And when the anchor cable reinforcement direction has no restrictions, the fmincon function offered by Matlab is adopted to optimize the anchorage direction angle. Finally, through the comparation of calculation results and engineering measurement, the validity and advancement of the proposed calculation method of the optimal anchorage direction angle are proved. The proposed method can further improve the anchoring effects and reduce the total usage of the anchor cables and the the slope supporting costs.

Key words: rock slope, prestressed anchor cable, wedge sliding, direction angle, three-dimensional optimization

CLC Number: 

  • TU 457
[1] XU Quan, HOU Jing, YANG Jian, YANG Xin-guang, NI Shao-hu, CHEN Xin. Fine stability analysis of rock slope based on synthetic rock mass technology [J]. Rock and Soil Mechanics, 2025, 46(7): 2062-2070.
[2] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[3] ZHAO Fei, SHI Zhen-ming, YU Song-bo, ZHOU Yuan-yuan, LI Bo, CHEN Jian-feng, ZHANG Qing-zhao, ZHENG Hong-chao. Research progress on dynamic failure and reinforcement of stratified rock slopes [J]. Rock and Soil Mechanics, 2025, 46(11): 3585-3614.
[4] QU Xiao-lei, ZHANG Yun-kai, CHEN You-ran, CHEN You-yang, QI Cheng-zhi, . Stability analysis of fractured rock slope based on seepage-deformation coupling model using numerical manifold method [J]. Rock and Soil Mechanics, 2024, 45(1): 313-324.
[5] WANG Zhi-ying, GUO Ming-zhu, ZENG Jin-yan, WANG Chen, LIU Huang. Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake [J]. Rock and Soil Mechanics, 2023, 44(9): 2566-2578.
[6] LIU Guo-feng, FENG Kun, YAN Chang-gen, FENG Guang-liang, XU Ding-ping, ZHOU Chi, . Probabilistic evaluation of excavation unloading response of rock slope considering the uncertainty of mechanical parameters [J]. Rock and Soil Mechanics, 2023, 44(7): 2115-2128.
[7] SHEN Hui, LIU Ya-qun, LIU Bo, LI Hai-bo, . Numerical study on the amplification effect of rock slopes under oblique incidence of seismic waves [J]. Rock and Soil Mechanics, 2023, 44(7): 2129-2142.
[8] WANG Chuan, LENG Xian-lun, ZHANG Zhan-rong, YANG Chuang, CHEN Jian, . Numerical study on failure path of rock slope induced by multi-stage excavation unloading based on crack propagation [J]. Rock and Soil Mechanics, 2023, 44(4): 1190-1203.
[9] LIU Xin-rong, GUO Xue-yan, XU Bin, ZHOU Xiao-han, ZENG Xi, XIE Ying-kun, WANG Yan, . Investigation on dynamic cumulative damage mechanism of the dangerous rock slope including deteriorated rock mass in hydro-fluctuation belt [J]. Rock and Soil Mechanics, 2023, 44(3): 637-648.
[10] XU Ming, YU Xiao-yue, ZHAO Yuan-ping, HU Jia-ju, ZHANG Xiao-ting. Analysis of seismic dynamic response and failure mode of bedding rock slope with laminated fractured structure [J]. Rock and Soil Mechanics, 2023, 44(2): 362-372.
[11] XIN Chun-lei, YANG Fei, FENG Wen-kai, LI Wen-hui, LIAO Jun. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations [J]. Rock and Soil Mechanics, 2023, 44(12): 3481-3494.
[12] YANG Xiao-feng, LU Zu-de, CHEN Cong-xin, SUN Chao-yi, LIU Xuan-ting, . Analysis of mechanical model of sliding-bending failure in bedding rock slopes with slab-rent structure [J]. Rock and Soil Mechanics, 2022, 43(S1): 258-266.
[13] GUO Ming-zhu, GU Kun-sheng, ZHANG He, SUN Hai-long, WANG Chen, LIU Huang, . Experimental study of dynamic response law of bedding rock slope with weak interlayer under strong earthquake [J]. Rock and Soil Mechanics, 2022, 43(5): 1306-1316.
[14] GAO Bing-li, LI Duo, LI Lang, CHEN Li-cheng, YANG Zhi-fa, . Stability analysis and visualization of rock slope blocks based on coordinate projection method [J]. Rock and Soil Mechanics, 2022, 43(1): 181-194.
[15] JIANG Shui-hua, OUYANG Su, FENG Ze-wen, KANG Qing, HUANG Jin-song, YANG Zhi-gang, . Reliability analysis of jointed rock slopes using updated probability distributions of structural plane parameters [J]. Rock and Soil Mechanics, 2021, 42(9): 2589-2599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!