Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 2880-2890.doi: 10.16285/j.rsm.2019.2060

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on dynamic response characteristics of loess tableland slopes based on shaking table test

LI Fu-xiu1, WU Zhi-jian2, YAN Wu-jian1, ZHAO Duo-yin3   

  1. 1. Key Laboratory of Loess Earthquake Engineering, Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou, Gansu 730000, China; 2. College of Transportation Science & Engineering, Nanjing Tech. University, Nanjing, Jiangsu 210009, China; 3. Chengdu Surveying Geotechnical Research Institute Co. Ltd. of MCC, Chengdu, Sichuan 610023, China
  • Received:2019-12-09 Revised:2020-04-09 Online:2020-09-11 Published:2020-10-20
  • Supported by:
    This work was supported by the National Earthquake Science Joint Foundation of China(U1939209), the National Natural Science Foundation of China(41472297) and the Scientific Research Foundation for Introducing Talent of Nanjing Tech. University.

Abstract: Based on the typical loess plateau slope of Kongtong district, Pingliang city, a 1:25 large-scale shaking table test is designed and accomplished using the conceptual model of the slopes with or without cracks. On the premise of satisfying the similarity principle, the dynamic response characteristics of model slopes of two kinds of structures are analyzed by inputting seismic waves in horizontal direction and vertical direction with different amplitudes. Results show that the horizontal and vertical seismic waves have obvious nonlinear amplification along the slope surface and the internal vertical direction, which reach the maximum value at the top of the slope. Under the horizontal seismic waves with the same amplitude, the acceleration amplification coefficient of the slope surface and section 4 are greater than that of the slope without crack at the same elevation in the middle and upper part of the slope, while in section 1, the amplification coefficient of the crack slope is smaller than that of the crack-free slope. After the seismic wave propagates through the slope soil, the predominant frequency changes significantly. With the increase of elevation, the slope will manifest selective amplification on middle and high frequency bands, which is more obvious on the side of fissure slope. Moreover, as the amplitude of seismic wave increases, the superior frequency transfers to the low frequency direction. However, the remarkable frequency attenuation is not obvious under the vertical seismic wave.

Key words: loess tableland slope, shaking table test, crack, acceleration dynamic response, spectrum analysis

CLC Number: 

  • TU411
[1] LIU Yi-ming, LI Zhen, FENG Guo-rui, YANG Peng, BAI Jin-wen, HUANG Bing-xiong, LI Dong, . Acoustic-thermal response characteristics and precursor law of fissured sandstone under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2025, 46(9): 2773-2791.
[2] WANG Bing-wen, LIU Chen-yi, KANG Ming-chao, LI Qian-long, YANG Lei, ZHOU Sen-lin, QIAN Lei. Investigation of damage mechanism and crack propagation in rock mass with open fracture incorporating T-stress effect [J]. Rock and Soil Mechanics, 2025, 46(8): 2409-2420.
[3] LI Man, XIN Hao-zhe, LIU Xian-shan, ZHANG Fan, HU Dai-wei, YANG Fu-jian, . Numerical study on mixed-mode fracture of rock mass based on modified phase field model [J]. Rock and Soil Mechanics, 2025, 46(8): 2600-2612.
[4] MA Peng-fei, ZHANG Yi-chen, YUAN Chao, XU Mao-zhou, GUO Xiao-xiong, . Simulations of interval damage phenomenon in weak rock mass using the improved peridynamic method [J]. Rock and Soil Mechanics, 2025, 46(7): 2296-2307.
[5] CHEN Yi-wei, DONG Ping-chuan, . Dispersion and attenuation of waves in saturated anisotropic fractured rocks [J]. Rock and Soil Mechanics, 2025, 46(6): 1934-1942.
[6] JIANG Hai-bo, LU Yan, LI Lin, ZHANG Jun, . Strength characteristics and damage evolution law of expansive soil in water conveyance channel under dry-wet and freeze-thaw action [J]. Rock and Soil Mechanics, 2025, 46(5): 1356-1367.
[7] OUYANG Miao, ZHANG Hong-ri, WANG Gui-yao, DENG Ren-rui, GUO Ou, WANG Lei, GAO You, . Optimization of the ratio of expansive soil improved by biological matrix based on response surface method [J]. Rock and Soil Mechanics, 2025, 46(5): 1368-1378.
[8] LIU Hong-shuai, YANG Jian-sheng, SONG Dong-song, SUN Qiang-qiang, . Centrifuge modeling on ground response of dry sand site under near-fault pulsed and non-pulsed ground motions [J]. Rock and Soil Mechanics, 2025, 46(5): 1429-1441.
[9] DU Hai-long, JIN Ai-bing, QIN Wen-jing, SHANG Rui-hao, WANG Chuang-jiang, MA Sai, . Mechanical properties and damage characteristics of cement grouted coal and rock under uniaxial compression [J]. Rock and Soil Mechanics, 2025, 46(5): 1521-1533.
[10] ZHOU Wen-qiang, JIANG Liang-wei, LUO Qiang, XIAO Zhuo-qi, LUO Yi-lian, WEI Ming, . Shaking table test on seismic performance of anchoring frame beam with flexible external anchor heads [J]. Rock and Soil Mechanics, 2025, 46(4): 1163-1173.
[11] SHEN Lin-fang, HUA Tao, WANG Zhi-liang, LI Song-bo, CHEN Qian. Effect of parameter spatial variability on fracture propagation morphology of rock hydraulic fracturing [J]. Rock and Soil Mechanics, 2025, 46(4): 1294-1302.
[12] DONG Jian-hua, YANG Bo, TIAN Wen-tong, WU Xiao-lei, HE Peng-fei, ZHAO Lü-hua, LIAN Bo, . Research and development of novel anti-slide pile to prevent liquefaction and shaking table model test of seismic response [J]. Rock and Soil Mechanics, 2025, 46(4): 1084-1094.
[13] CHANG Shi-qi, DONG Xiao-qiang, LIU Xiao-feng, LI Jiang-shan, LIU Xiao-yong, ZHANG Hao-ru, HUANG Yin-hao, . Model experiment and numerical simulation of the instability of a dry red mud storage yard dam caused by water level changes [J]. Rock and Soil Mechanics, 2025, 46(4): 1122-1130.
[14] SU Yong-hua, YANG Zhong-wu, YUE Shao, LI Ming. Fracture evaluation criteria based on static directional cracking of rocks with quadrilateral holes [J]. Rock and Soil Mechanics, 2025, 46(3): 695-705.
[15] QIAO Long-quan, CHANG Ju-cai, YAN Liang-huan, QI Chao, SHI Wen-bao, . Fracture propagation characteristics of true triaxial splitting grouting in soft rock-like materials [J]. Rock and Soil Mechanics, 2025, 46(3): 833-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!