Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 2963-2972.doi: 10.16285/j.rsm.2019.1587

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Mechanism of foundation pit deformation caused by dewatering before soil excavation: an experimental study

ZENG Chao-feng, XUE Xiu-li, SONG Wei-wei, LI Miao-kun, BAI Ning   

  1. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
  • Received:2019-09-13 Revised:2020-04-19 Online:2020-09-11 Published:2020-10-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708206, 51978261), the China Postdoctoral Science Foundation (2019T120797, 2018M633297) and the Natural Science Foundation of Hunan Province (2020JJ5193).

Abstract: The existing research on foundation pit mainly focuses on the deformation caused by soil excavation. It is often believed that the retaining wall deformation would commence after soil excavation. However, some field measurements show that the dewatering conducted before soil excavation might have already induced retaining wall deflection and surrounding ground deformation, which could be at centimeter level. Apparently, the monitoring data excluding deformations caused before excavation will underestimate the environmental effect of the construction work. In order to investigate the mechanism of foundation pit deformation caused by dewatering before excavation, a similarity model test is conducted to simulate the dewatering process. In the laboratory experiment, by means of mini dewatering wells, the seepage process around wells is reproduced and the seepage effect on retaining wall deformation is studied. The test results indicate that the depression cone outside the foundation pit enlarges continuously during the dewatering. Meanwhile, cantilever-type wall deflection and spandrel-type surface settlement are observed. In addition, the dewatering leads to an apparent decrease of the pore water pressure in front of the wall, which further induces decrease of the lateral total pressure. In response to the stress change, the retaining wall moves towards the pit in a cantilever type to achieve a new equilibrium state, and further induces the surrounding ground deformation as a result of the ground loss behind the wall.

Key words: foundation pit dewatering, water level, excavation deformation, earth pressure, model test

CLC Number: 

  • TU 470
[1] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[2] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[3] FANG Wei, WU Run-feng, ZHOU Chun-mei, . Rankine passive earth pressure of unsaturated soil using envelope shell model [J]. Rock and Soil Mechanics, 2025, 46(9): 2885-2893.
[4] BIAN Hai-ding, WEI Jin, WANG Jin-tao. Mechanical characteristics and earth pressure calculation of ultra-large span pipe-arch corrugated steel plate culverts [J]. Rock and Soil Mechanics, 2025, 46(8): 2532-2546.
[5] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[6] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
[7] CAI Tian-ming, LI Shun-qun, CHENG Xue-lei, ZHOU Yan, LI You-bing, JING Le-wei, FANG Xin-chang, WANG Ying-hong, . Analysis and application of temperature effects on earth pressure cell test data [J]. Rock and Soil Mechanics, 2025, 46(6): 1967-1976.
[8] SUN Shan-shan, JIA Shi-wen, LIANG Zhong-xu, LIU Mo-lin, ZHANG Chang-guang. Vertical earth pressure of a trench-buried culvert based on binomial distribution mode for backfill soil load transfers [J]. Rock and Soil Mechanics, 2025, 46(5): 1501-1510.
[9] SHI Zhan, ZHANG Tie-jun, LI Mei-xiang, TAO Si-ji, BO Yin, LI Yun-bo, . Model test of horizontal freezing reinforcement in mud tank of slurry balanced shield [J]. Rock and Soil Mechanics, 2025, 46(5): 1534-1544.
[10] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[11] REN Yi-qing, CHEN Bao-guo, REN Guo-qing, YANG Zhen-zhong, XU Fang. Stress characteristics of high-fill box culvert with soft layers placed on the top and sidewall during construction [J]. Rock and Soil Mechanics, 2025, 46(4): 1153-1162.
[12] PEI Yuan-yuan, LONG Jian-hui, GUO Shi-yi, AN Cheng-ji, WENG Hang-yu, ZHANG Ji-ning, . Model test study on stress-strain characteristics of angled reinforced soil retaining wall under different loads [J]. Rock and Soil Mechanics, 2025, 46(2): 539-550.
[13] YAO Jia-nan, XU Chang-jie, CHI Min-liang, WANG Yan-ping, XI Yue-lai, WANG Wei-feng, FENG Guo-hui, SUN Jia-zheng, . Discrete element simulation and theoretical study on non-limit active earth pressure of rigid retaining wall under RBT mode [J]. Rock and Soil Mechanics, 2025, 46(2): 640-652.
[14] WANG Bing, HU Xiao-bo, KONG Nan-nan. Experimental study on vacuum combined with electro-osmosis for reinforcing ultrafine particle dredged soil [J]. Rock and Soil Mechanics, 2025, 46(11): 3523-3533.
[15] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!