Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (11): 3531-3539.doi: 10.16285/j.rsm.2020.0232

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone

JIN Ai-bing1, 2, WANG Shu-liang1, 2, WEI Yu-dong1, 2, SUN Hao1, 2, WEI Li-chang1, 2   

  1. 1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-03-05 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674015) and the Fundamental Research Funds for the Central Universities(FRF-TP-19-026A1).

Abstract: Rock engineering may be subjected to high temperature environment. Different cooling methods of high-temperature rock often lead to significant changes in the physical and mechanical properties of the rock, which will have an important impact on the stability and permeability of rock engineering. Magnetic resonance imaging (MRI), scanning electron microscope (SEM) and uniaxial compression test were used to study the porosity, pore size distribution, peak strength, peak strain, stress-strain relationship and microstructure changes of five temperatures for sandstone samples at 100, 300, 500, 600 and 800℃ under two cooling methods (natural cooling and water cooling). The test results show that: (1) When the rock samples used the natural cooling method, the strength of high-temperature sandstone does not decrease continuously with the increasing of temperature. However, rock samples using water cooling method show continuous decrease of sandstone strength, and the decreasing extent is far greater than that of natural cooling; (2) 500℃ can be considered as the critical value of the influence of different cooling methods on the porosity of sandstone. When the temperature is above 500℃, the water cooling method will cause the rock porosity increase rapidly, and the proportion of pores with large pore diameter (Ф>10 μm) is also higher than that of the natural cooling method. In this consideration, in the field of high-temperature sandstone engineering, the possible seepage hazards should be fully considered when water cooling is used (i.e., fire extinguishing with water after a tunnel is on fire); (3) The SEM test results shows that when the temperature is above 500℃, water cooling promotes the widening and expansion of cracks. When the temperature reaches to 800℃, the pore size of water-cooled sandstone becomes larger, and the fracture is largely developed and connects into a network. This will lead to a substantial increase in water permeability. At the same time, it is one of the reasons for the sharp decrease in rock strength that caused by water cooling at this temperature.

Key words: sandstone, heat treatment, cooling conditions, pore, MRI, SEM

CLC Number: 

  • TU 521
[1] NIE Yao-wu, HU Bing, GU Lei-yu, LI Bin, ZHOU Quan-chao, LI Wen-hui, LI Qi, LI Xia-ying, . Numerical simulation on safety risk assessment of coal mining with CO2 geological storage [J]. Rock and Soil Mechanics, 2025, 46(S1): 491-506.
[2] ZHANG Sheng, BAI Wei, XU Ding-ping, ZHENG Hong, JIANG Quan, LI Zhi-wei, XIANG Tian-bing, . Experimental and theoretical study on sandstone damage evolution under cyclic loading based on acoustic emission and resistivity monitoring [J]. Rock and Soil Mechanics, 2025, 46(S1): 53-66.
[3] SONG Yu, DING Song, CHEN Kai-bin, JIANG Jia-hui, YANG Cheng-kun, CHEN Yu-jie, ZHANG Jian-wei, ZHENG Jun-jie. Dissolution characterization of zinc-contaminated soils cured by activated magnesium oxide based on carbonation [J]. Rock and Soil Mechanics, 2025, 46(S1): 92-105.
[4] DONG Lin, CHEN Qiang, XIA Kun, LI Yan-cang, LI Yan, WANG Xiao-lei. Effects of plasticity on liquefaction and cyclic softening characteristics of fine-grained soils [J]. Rock and Soil Mechanics, 2025, 46(S1): 228-237.
[5] LIU Xian-shan, SUN Meng, ZHENG Zhi-wei, XIONG Zhen-yu, YU Ming-zhi, CAO Yi-ting, SONG Yu-lin , HUANG Zi-xuan, . Modes and efficiency of two-phase displacement flow in complex pores [J]. Rock and Soil Mechanics, 2025, 46(8): 2363-2375.
[6] LEI Rui-de, GU Qing-heng, HU Chao, HE Pei, ZHOU Lin-sen, . Acoustic emission signal characteristics and precursory recognition of rock failure in fractured sandstone [J]. Rock and Soil Mechanics, 2025, 46(7): 2023-2038.
[7] WU Jia-yuan, WANG Hua-ning, SONG Fei, HU Tao, JIANG Ming-jing, . A semi-analytical wellbore stability model considering strain-softening behaviors of energy-related sediments and the entire exploitation process [J]. Rock and Soil Mechanics, 2025, 46(7): 2121-2134.
[8] NI Rui-si, XIAO Shi-guo, WU Bing, LIANG Yao, . Analytical solution for consolidation of saturated soft clay under vacuum preloading with non-sand drainage system considering nonlinear drain resistance [J]. Rock and Soil Mechanics, 2025, 46(7): 2160-2172.
[9] WU Ting, YANG Zhi-bing, HU Ran, CHEN Yi-feng, . Effect of fine particle transport and pore clogging on two-phase flow characteristics [J]. Rock and Soil Mechanics, 2025, 46(6): 1755-1764.
[10] NI Zu-jia, QIAO Jiang-mei, ZHANG Jun-kai, TANG Xu-hai, . Determining mechanical property and wave velocity of sandstone by accurate grain-based model and microscale mechanics experiments [J]. Rock and Soil Mechanics, 2025, 46(6): 1865-1880.
[11] CHEN Yi-wei, DONG Ping-chuan, . Dispersion and attenuation of waves in saturated anisotropic fractured rocks [J]. Rock and Soil Mechanics, 2025, 46(6): 1934-1942.
[12] WU Qing-qian, SHI Lu, LI Xiao-chun, BAI Bing, . Experimental study on effects of H2O and supercritical CO2 on mechanical properties of sandstone with a low clay mineral content [J]. Rock and Soil Mechanics, 2025, 46(5): 1442-1454.
[13] WANG Gang, WANG En-mao, LONG Qing-ming, XU Hao, CHEN Xue-chang, LIU Kun-lun, . Relationship between hydraulic fracturing and fracture propagation in coal seams considering filtration effect [J]. Rock and Soil Mechanics, 2025, 46(4): 1071-1083.
[14] DONG Jian-hua, YANG Bo, TIAN Wen-tong, WU Xiao-lei, HE Peng-fei, ZHAO Lü-hua, LIAN Bo, . Research and development of novel anti-slide pile to prevent liquefaction and shaking table model test of seismic response [J]. Rock and Soil Mechanics, 2025, 46(4): 1084-1094.
[15] CHANG Shi-qi, DONG Xiao-qiang, LIU Xiao-feng, LI Jiang-shan, LIU Xiao-yong, ZHANG Hao-ru, HUANG Yin-hao, . Model experiment and numerical simulation of the instability of a dry red mud storage yard dam caused by water level changes [J]. Rock and Soil Mechanics, 2025, 46(4): 1122-1130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!