Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (12): 3910-3918.doi: 10.16285/j.rsm.2020.0425

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Model test study on dynamic response characteristics of host rockmass and supporting bolt under blasting load

CHEN Shi-hai1, 2, GONG Jia-chen1, HU Shuai-wei1   

  1. 1. College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, China; 2. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen, Fujian 361021, China
  • Received:2020-04-13 Revised:2020-07-07 Online:2020-12-11 Published:2021-01-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51974136), the Fund of the State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact(PLA University and Technology) (DPMEIKF201307) and the Huaqiao University Research Foundation(13BS402).

Abstract: To study the dynamic response characteristics of host rockmass and supporting bolt under blasting load, a three-dimensional dynamic loading physical model test was performed using an underground engineering model test system. The propagation law of blasting seismic wave and the dynamic response characteristics of supporting bolt were tested using electric spark source instead of traditional explosives. Experimental research results show that the electric spark source has the characteristic of the impact loading, which can well replace traditional high explosives. The radial acceleration peak values and the axial and hoop strain peak values of blasting seismic wave within host rock do not decrease gradually as the increasing of the radial distance along the excavation, but show a wave-like attenuation pattern of positive and negative alternating. In addition, the acceleration peak values show a nonlinear and decrease gradually along the excavation axial direction. The peak acceleration values are affected largely by the seismic load amplitude, that is, the higher the source load, the higher the peak acceleration value at the same measurement point. In addition, the vibration characteristics of the supporting bolt were measured under blasting load. It is found that the extension anchor bolt, the free section of the anchor bolt is mainly in tension state, but the anchor section of the bolt is in the state of both tension and compression. The maximum tensile strain of the anchor and free section is approximately the same, while the maximum compressive strain of the anchor section is much larger than that of the free section. The vibration duration of anchor section and free section is also approximately similar. As for the full-anchored bolt, the bolt has subjected both a tensile state and a compressive state, and the tensile strain is greater than the compressive strain. As for the end-anchored bolt, the stress state is mainly in the tension state, and the tensile strain is much greater than the compressive strain. The research conclusion not only has important theoretical significance, but also can provide predictable guidance for the ground support design of underground excavation.

Key words: model test, electric spark source, blasting seismic wave, supporting bolt, dynamic response

CLC Number: 

  • TU457
[1] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[2] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[3] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[4] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
[5] SHI Zhan, ZHANG Tie-jun, LI Mei-xiang, TAO Si-ji, BO Yin, LI Yun-bo, . Model test of horizontal freezing reinforcement in mud tank of slurry balanced shield [J]. Rock and Soil Mechanics, 2025, 46(5): 1534-1544.
[6] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[7] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[8] YANG Ming-hui, CAI Ming-hui, CHEN Bo, YANG Han, . A method for calculating horizontal impedance of a single pile considering wave-induced seabed dynamic response [J]. Rock and Soil Mechanics, 2025, 46(5): 1563-1572.
[9] REN Yi-qing, CHEN Bao-guo, REN Guo-qing, YANG Zhen-zhong, XU Fang. Stress characteristics of high-fill box culvert with soft layers placed on the top and sidewall during construction [J]. Rock and Soil Mechanics, 2025, 46(4): 1153-1162.
[10] PEI Yuan-yuan, LONG Jian-hui, GUO Shi-yi, AN Cheng-ji, WENG Hang-yu, ZHANG Ji-ning, . Model test study on stress-strain characteristics of angled reinforced soil retaining wall under different loads [J]. Rock and Soil Mechanics, 2025, 46(2): 539-550.
[11] WANG Bing, HU Xiao-bo, KONG Nan-nan. Experimental study on vacuum combined with electro-osmosis for reinforcing ultrafine particle dredged soil [J]. Rock and Soil Mechanics, 2025, 46(11): 3523-3533.
[12] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[13] CHEN Huai-lin, YANG Tao, RAO Yun-kang, ZHANG Zhe, WU Hong-gang, XIE Jiang-wei, TENG Han-qing. Calculation method of sliding surface stress based on segmented sliding surface stress measurement system [J]. Rock and Soil Mechanics, 2025, 46(11): 3562-3573.
[14] LEI Hua-yang, YANG Yang, XU Ying-gang, . Experimental study on stratum disturbance of shield construction under different tunnel depth conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 1-12.
[15] LIU Zhi-chun, MA Bo, HU Zhi-nan, ZHANG Zhen-bo, DU Kong-ze, . Experimental study on distribution pattern of active earth pressure of foundation pit adjacent to an underground structure [J]. Rock and Soil Mechanics, 2024, 45(S1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!