Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (5): 1363-1374.doi: 10.16285/j.rsm.2022.00248

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Infiltration characteristics and deformation mechanism of rainfall-induced landslides in Three Gorges Reservoir Area based on 1D and 2D model tests

WANG Li1, 2, 3, NAN Fang-yun1, 2, WANG Shi-mei1, 2, CHEN Yong1, 2, LI Xiao-wei4, FAN Zhi-hong1, 2, CHEN Yu-shan1, 2   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. College of Civil Engineering & Architecture, China Three Gorges University, Yichang, Hubei 443002, China; 3. Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan, Hubei 430074, China; 4. Central-South Institute of Metallurgical Geology, Yichang, Hubei 443002, China
  • Received:2022-09-26 Accepted:2022-12-30 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (U21A2031), the Key R&D Program of Hubei Province (2022BAA047), the Open Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (2022KDZ19) and the Open Fund of Badong National Observation and Research Station of Geohazards (BNORSG-202207).

Abstract: Shallow deformation of ancient landslides induced by heavy rainfall is the most serious geological disaster in China's Three Gorges Reservoir Area (TGRA). It is important to explore the infiltration characteristics and its shallow deformation mechanism caused by heavy rainfall. In this study, the rainfall-induced landslide of the TGRA was selected as the research object, and the distributions of the soil permeability coefficients for rainfall-type landslide were summarized. Considering the effects of heavy rainfall, one-dimensional (1D) soil column infiltration test and two-dimensional (2D) landslide model test were conducted to study the infiltration characteristics of landslide soil and the corresponding shallow deformation mechanisms under different rainfall intensities. The results of the rainfall infiltration tests show that the speed of rainfall infiltration into soil depends on the magnitudes of rainfall intensity and soil permeability coefficient, i.e. when the rainfall intensity is less than or equal to the soil permeability coefficient, the infiltration capacity increases with rainfall intensity; when the rainfall intensity is greater than the soil permeability coefficient, the infiltration capacity decreases. The model test results show that the infiltration of heavy rainfall makes the surface soil transiently saturated and then the gas in the unsaturated zone below the surface is temporarily closed, which leads to the compression of gas by the surface pore water pressure. This means that the pore gas pressure increases with the infiltration of heavy rainfall. Overall, for the rainfall-induced landslides in TGRA, short-term torrential rain can create transient saturation zones and generate closing gas which is the main reason affecting the infiltration capacity of heavy rainfall. The water pressure transmitted by the closing gas causes the pore water pressure of the shallow soil to increase sharply, which is also the main reason for the shallow deformation and damage of many landslides.

Key words: Three Gorges Reservoir Area, model test, rainfall-induced landslides, infiltration characteristics, deformation mechanism

CLC Number: 

  • TU 411
[1] LAI Zhi-qiang, BAI Sheng-yuan, CHEN Lin, ZOU Wei-lie, XU Shu-ling, ZHAO Lian-jun, . Experimental study of dewatering characteristics of ring-type tube stockyard sludge storage [J]. Rock and Soil Mechanics, 2025, 46(9): 2805-2815.
[2] HUANG Da-wei, LU Wen-jian, LUO Wen-jun, YU Jue, . An experimental study on the influence of synchronous grouting during shield tunnel construction on vertical displacement and surrounding earth pressure in sandy soil [J]. Rock and Soil Mechanics, 2025, 46(9): 2837-2846.
[3] SONG Wei-tao, ZHANG Pei, DU Xiu-li, LIN Qing-tao, . Influence of soil property on ground response during construction of shallow shield tunnel [J]. Rock and Soil Mechanics, 2025, 46(7): 2179-2188.
[4] YANG Bai, QIN Chao, ZHANG Yin-hai, WANG Wei, XIAO Shi-guo, . Model tests on bearing characteristics of pile with high rock-socketed ratio above an underlying karst cave [J]. Rock and Soil Mechanics, 2025, 46(6): 1839-1850.
[5] BAO Wei-xing, TIAN Lei, WU Qian, HUANG Zhi-ming, ZHANG Zhi-yong. Characteristics of water infiltration in Ili loess and its impact on collapse deformation [J]. Rock and Soil Mechanics, 2025, 46(5): 1379-1391.
[6] SHI Zhan, ZHANG Tie-jun, LI Mei-xiang, TAO Si-ji, BO Yin, LI Yun-bo, . Model test of horizontal freezing reinforcement in mud tank of slurry balanced shield [J]. Rock and Soil Mechanics, 2025, 46(5): 1534-1544.
[7] CHAI Hong-tao, WEN Song-lin, . Centrifugal model test on characteristics of pile foundation bearing capacity failure envelope curve under combined loading [J]. Rock and Soil Mechanics, 2025, 46(5): 1556-1562.
[8] REN Yi-qing, CHEN Bao-guo, REN Guo-qing, YANG Zhen-zhong, XU Fang. Stress characteristics of high-fill box culvert with soft layers placed on the top and sidewall during construction [J]. Rock and Soil Mechanics, 2025, 46(4): 1153-1162.
[9] PEI Yuan-yuan, LONG Jian-hui, GUO Shi-yi, AN Cheng-ji, WENG Hang-yu, ZHANG Ji-ning, . Model test study on stress-strain characteristics of angled reinforced soil retaining wall under different loads [J]. Rock and Soil Mechanics, 2025, 46(2): 539-550.
[10] WANG Bing, HU Xiao-bo, KONG Nan-nan. Experimental study on vacuum combined with electro-osmosis for reinforcing ultrafine particle dredged soil [J]. Rock and Soil Mechanics, 2025, 46(11): 3523-3533.
[11] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[12] CHEN Huai-lin, YANG Tao, RAO Yun-kang, ZHANG Zhe, WU Hong-gang, XIE Jiang-wei, TENG Han-qing. Calculation method of sliding surface stress based on segmented sliding surface stress measurement system [J]. Rock and Soil Mechanics, 2025, 46(11): 3562-3573.
[13] YANG Hao-tian, WU Hong-gang, WEI Hong, LAI Guo-quan, YIN Wei-jiang, . Coordinated deformation mechanism of three-tier bridge abutment slope-BFRP anchor system under rainfall conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 267-276.
[14] SUN Min-yang, WANG Zhong-jin, XIE Xin-yu, ZHANG Ri-hong, LOU Yang, ZHU Da-yong, . Model test on thermal-mechanical characteristics of energy pile groups in saturated clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 382-390.
[15] LEI Hua-yang, YANG Yang, XU Ying-gang, . Experimental study on stratum disturbance of shield construction under different tunnel depth conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!